
VOLUME IV, Issue 4 ACSD PUBLICATION $3.00

T a b le o-f Content's-

General Information 2
Death and Rebirth 3
Reader I/O 5
Background/Foreground 10
Machine Language for Beginners: Part V R Bressler 13
Observations on Volume 4, Issue 3 R Busdiecker 21
Graphics and Animation in BASIC: Part II R Bressler 25
The Mon i tor J Key 33
Relat i ve Files: Par t 11 R Bressler 35
Two PET Bugs E Bowyer 42
Auto Operating Cost Study H Greenup 43
Epson and I J Fowler 4 6
Review: SYSRES R Bressler 48
Review: Millipede & Wallbanger R Bressler 50
Review: Multiplication of Fractions & Equations R Bressler 51
Review: Programming the PET/CBM J Key 52
Review: HESCAT R Bressler 53
Review: Prowriter 851OAP R Bressler 54

Business. Correspondence. Letter Quality

It seems that the prices o-f dot matrix printers are continuing to drop while
the -features and print quality are improving. Commodore has reduced the price o-f
its low end 4022 while offering a -faster -fuller -featured 8023 printer. Epson
prices have steadily decreased while the list o-f -features gets larger. Friction
and tractor will now be standard and Graftrax Plus is a new option. New printers
to watch are the Microline series by Okidata and the Prowriters by C. Itoh.
These seem to include -fewer type fonts but may have some -features the Epson
lacks. Make sure that when you buy a printer you get a combination o-f 1 ow price,
a long list o-f -features and compatibilty with your hardware and software.

Prices have also been coming down on the letter quality printers but so have
the list o-f -features. The Smith Corona TP-1, Brother HR-1 and Olivetti DY211 are
examples o-f these low priced entries. These models have decent print quality but
may lack certain -features and be less rugged than your application requires. C.
Itoh's Printmaster- F—10 is the equivalent o-f the Spinwriter -for a little over
half the cost. You won't lose any features or ruggedness when you buy this
model. Still lower in price is the new Daisywriter by Computers International.
It claims to emulate several established printers and to have ALL the features
of a true word processing printer including the needed durabilty. Only a cable
is required to connect it to your CBM system.

General In-format i on

The PAPER is published 6 times per year by Centerbrook So-ftware
Pearl St., Livingston Manor, NY 12758. Telephone: <914) 439-3591.

Designs at

the current
■for all the

to The PAPER,

volume.
issues o-f
Pearl St

Single copy
the current
, Livingston

12758 (Permit #14)

New subscribers will receive all issues o-f
price is $4 and the subscription price is $20
volume. Subscription orders should be mailed
Manor, NY 12758

Third class postage is paid at Livingston Manor, NY
POSTMASTER: Mail all address changes to the address above.

The PAPER and Centerbrook So-ftware Designs are in no way associated with
Commodore Business machines. CBM is not responsible -for any o-f the contents o-f
The PAPER unless otherwise noted. PET and CBM are trademarks o-f Commodore
Business Machines.

All readers are encouraged to submit articles o-f general interest to PET
users. Materials submitted must be -free o-f copyright restrictions. The contents
o-f The PAPER are not copyrighted. All articles remain the property o-f the author
and may be reprinted with their permission. When reprinting please include a
note stating that the article was originally published in The PAPER.

Subscription Rates:

USA third class: $20/volume
Canada first class: $25/volume
Foreign surface: $30/volume

airmail: $40/volume
Payment in check or money order in US funds must accompany all orders. Only
prepaid purchase orders will be accepted. All checks should be made out to The
PAPER. Sorry, we cannot accept bank or credit cards.

Advert i sino

Advertising rates are $25 per quarter page per issue. Copy must be camera ready
or there will be an additional charge. Special rates may be negotiated.

C i rculat i on

Volume 4 Issue 3

Printed: 700 USA: 491 Canada: 34 Fore i g n : 26

Software

Software published in The PAPER is believed to be free of copyright
restrictions. It is meant to work on the machine indicated. Many programs were
originally designed to work with only one ROM set but efforts have been made to
convert them to work on all present ROM releases.

Staff:

Publi sher:
Ed i tor:
Assoc. Ed:

Ralph Bressler
Doug Haluza
Roy Busdiecker

Vic Santa Lucia

Staff writers: Bill Batcher
Jim Fowler

Jerry Key
Cindy Bressler

This issue has been prepared using the new Superscript word
C. Itoh Prowriter 8510AP. An elite typeface was used with the
articles expanded.

processor and a
titles of most

The PAPER 2 Aug/Sept 1982

Death and Re b i r t h

This is the last issue o-f The PAPER that will be published. As o-f October 1
The PAPER and the Midnite So-ftware Gazzette will be combining to -form a new
publication with a new name. Paid up subscribers to The PAPER will receive the
■first two issues o-f the new publication without additional payment. New
subscribers will be charged according to the old PAPER schedule and advertising
costs will remain the same. One big change is that issues will be sent by -first
class mail which should greatly improve the delivery speed. This is really a
merger, not a "take over", since the sta-f-f o-f both publications will continue to
work on the new newsletter. The Gazzette people will be primarily responsible
■for reviews, commentary, and short tips. Doug and I will continue to write
articles and edit these -for the new publication. Jim Strasma has also organized
people to put the -final copy together and to perform other important duties such
as maintaining a mailing list and contacting advertisers. We feel that although
this will reduce the number of publications for the Commodore line it will
increase the quality of both publications. It will also increase the coverage of
the VIC, <44, SuperPET and other machines since more people with varying
interests will be involved.

I would now like to thank the many people, both subscribers and advertisers,
who have supported us through an irregular publishing schedule. Our quality has
been high but or quantity very low. Although I enjoy writing and responding to
the many questions of people around the country, the newsletter was becoming a
real drag on my time. Not only was I just breaking even but it was taking time
away from my own programming and software business. The problems of
administration far outweighed the problems of writing and editing. This is
compounded by the fact that I am less than well organized and tend to put off
the more onerous tasks. However, the worst part of the whole operation was the
fact that despite all efforts we were simply unable to keep a regular and
dependable publication schedule. This certainly discouraged some readers and
potential subscribers but it discouraged me even more. It is strange that this
merger comes just as I have begun to "get my act together”. Of absolute
necessity, I have begun to develop a few standards and practices which speed
various operations. I hope this will carry through to my work on the new
newslet ter.

I would also like to thank all those people who have written articles once or
on a regular basis. I hope these people will continue to write. I also owe a
debt to many people who have helped edit and put together issues from
proofreading copy to pasting on labels. I do not want to mention names since the
list is too long and 1 am sure I would forget several people. Many issues were
composed at American Peripherals, a Commodore dealer on Long Island, who has
been very helpful in allowing us to use his facilities and equipment and who has
supported us with ads and loans when we needed them. Lastly, I would like to
thank my wife, Cindy, who has put up with my late hours, constant talk about
computers and who has done much proofreading.

Well, that's enough of the "death" part. Let's not forget that a new, bigger,
and better publication is in the works. Jim Strasma deserves the credit for
getting the ball rolling and contacting me first. Without his organization and
suggestion that we merge I might have let everything drop at the end of volume
4. He and his group are taking on the major tasks but I feel I will also have a
part to play. Not having to administer mailing lists and bill advertisers frees
me for more writing and editing and some programming. I think I'll need this
time since a bigger, better newsletter will have more articles to edit and more
authors ready to contribute. 1 am looking forward to an excellent Commodore-only
magazine to help beginner and experienced programmer alike. We'll need this kind
of publication as Commodore continues its push to become the leader in all
fields of microcomputer use.

The PAPER 3 Aug/Sept 1982

Reader I /O

The letters and notes presented here are in no special order. The responses are
usually based solely on the knowledge o-f the publisher and/or editor. One o-f the
problems o-f having such a small sta-f-f is that we cannot possibly know everything
or have tried every piece o-f so-ftware and hardware. We try to research problems
as much as we can. This is why we rely so heavily on the input o-f the readers.

On page 33 o-f the Nov/Dec issue in the article "Techniques -for Better BASIC",
you have:

9030 IF I$=N$ THEN RETURN
9040 NEXT S
9050 RETURN

Enough runs o-f 9030 will cause an ?0UT OF MEMORY ERROR as the stack pointer does
not get reset in the F0R-NEXT loop. A preferable way is:

9030 IF I$=N$ THEN S=NI+2

This sets the index variable <S) to a value greater than the upper limit o-f the
loop <NI) and:

<1) -forces you out o-f the loop
<2) allows S to be used as a -flag when you RETURN
(3) properly closes the FOR...NEXT loop, avoiding OUT OF MEM

Line 3040 would then be IF S>NI+1 THEN ?"___ “ . The >NI+1 is, of course,
necessary because the NEXT ends with a value 1 greater than the upper limit of
the loop. - Glenn Fisher

Glenn - I have heard this arguement many times and it is true. Apparently the
key phrase is “Enough runs of...". I tried a similar situation and it ran more
than 1000 before I got tired of watching. When I inspected the stack pointer it
did indeed show that the stack was filling. However, I remain unconvinced that
this technique alone will cause problems. - Ralph

I am thinking of buying a Commodore SuperPet but haven't decided yet.
Commodore seems to have a bad name in these parts! Any advice would be welcome.
- A1 Thompson, 14 Power Ave, Shrewsbury, MA 01545

A1 - As I indicated in our phone conversation, 1 think that the Commodore
products are the best value around and that there is a product for almost every
need. Right now 1 have a PET 2001 with BASIC 4.0 and 32K RAM, a 4022 printer,
4040 disk, SuperPET, 8050 disk, VIC-20, Commodore-64 and 1541 disk, so my money
is where my writing is. I consider the dual personality of the SuperPET one of
the best ideas around. I can word process and data manage in the 8032 mode and
then switch to learning some APL. Buy one by all means! - Ralph

First let me say that we are most delighted with The PAPER and look forward
to the next issue. It is so informative. We feel that Commodore's "Education
Marketing Resources" for $25 is an excellent purchase and very helpful to
educators. This 3" thick looseleaf has information about all types of software
plus 4 disks full of public domain educational software. However, overall, we
totally agree with you. It is so frustrating to see most of the popular computer
magazines pushing nothing but Apple and TRS-80. This makes it difficult to sell
Commodore although we think they have far superior hardware. - Jayne Schiek, 34
West Side Square, Macomb, IL 61455

The PAPER 4 Aug/Sept 1982

Jayne - It's good to hear about another valuable resource. As -far as the other
issue goes, with the introduction o-f the new line o-f machines maybe some of
those magazines will find space for Commodore. - Ralph

1 have been an 8032 user for about six months and am interested in useful
programs and products. I would like some information on clubs and software
exchanges so I can expand my software library. 1 have VisiCalc so ideas on its
uses would be helpful. Perhaps contact with someone in a club or a list of other
publications would be useful in expanding the usefulness of my system. - Robert
G Sackreiter, Rt 2 Box 90, Mil bank, SD 57252

Robert - It's almost impossible to list all of the resources, user's groups and
publications in this small space. A list of active users groups was a project
that we started but never completed. The Commodore magazine has a list but it is
not at all up to date. For useful programs contact the two groups below for
their current arrangements!

ATUG Chris Bennett
c/o Brent Anderson TPUG Secretary
200 S. Century 381 Lawrence Ave.
Rantoul, IL 61846 Toronto, Ont M5M 1B9

These two groups have literally hundreds of useful programs at pennies per
program. Both groups also publish newsletters. The Midnite Software Gazette
published by ATUG and The PAPER will be combining as mentioned elsewhere. The
TPUG publication is called TORPET. Other than these two the only other
publication that comes to mind is The Transactor which is now back after a short
absence. Write them at:

The Transactor
Canadian Micro Distributors
500 Steeles Ave
Milton, Ont L9T 3P7
CANADA

Visicorp has apparently decided not to update the PET version of VisiCalc and
only reluctantly decided to "release" the 8096 version. The original authors,
Software Arts, publish a newsletter called SATN which 1 DO NOT recommend. It
costs $30 for 6 issues and constantly uses functions not available in the PET
versi o n .

I have just ordered a CBM 8032, 8050 disk drive and an Epson MX-100 printer.
I am interested in hearing about geneology software that might be available.
Doris Mello, 923 Peach St., San Luis Obispo, CA 93401

Doris - This is one for the readers. Aside from some magazine articles I have
not seen much in this area. - Ralph

Five months ago I got a SuperPET, 4040 disk and Diablo printer. Life,
professional and personal, will never be the same. I got this system primarily
for Word processing and office programs. But there is so much out there, and so
much proliferation, that who knows what it will be doing for me. I practice
alone, and have not had a secretary for the last few months. My secretary felt
threatened by the SuperPET and did not seem interested in learning something
new. I manage well by myself, but will soon find a secretary more compatible
with my equipment and the future. - William A Bason

The PAPER 5 Aug/Sept 1982

William - Your experience with your secretary is sad but not unusual. People in
offices must -face up to the -fact that word processing and computers are here to
stay. These machines will only replace them if the people re-fuse to update their
skills to match the changes. - Ralph

Here are two problems -for the Reader 1/0 column in the next issue:
(1) The Commodore printer uses an 8 x 6 dot matrix. This is easily confirmed

by typing the shi-ft & and counting the dots. And yet, both the user's manual
(page 31) and the excellent Osborne guide (page 330) maintain it's a 7 x 6 dot
matrix. Why ? It is true that most o-f the characters use only the top 7 lines o-f
dots. The lowest line is used primarily -for the “tails" on some letters. But
certainly -for user de-fined characters, the user should know that he can use all
8 rows. 0-f course, the top row is numbered 128.

(2) A ji-f-fy is a ji-f-fy is a ji-f-fy. Right? Well, apparently not. Take two
PET's and set them side by side. Enter a simple test program like this one into
both:

10 TI$="000000"
20 GET K$: IF K$=“" THEN 20
30 PRINT TI

Now type RIM on both machines and try to press RETURN simultaneously on both.
After some minutes have passed, go over to the PETs and press a key on each. The
numbers should match but it seems some PETs run fast and some run slow. Why?

One day I was sitting in my classroom looking at a dozen PETs and it occurred
to me it would look cool to have a picture move from one PET to the next, on
down the line. I whipped up a program on PET #1 that showed an archer releasing
an arrow. The program repeated every 20 seconds or 1200 jiffies. The program on
PET #12 showed the arrow landing on target every 1200 jiffies. The program in
PETs 2 to 11 showed an arrow streaking across the screen every 1200 jiffies.
After the pets were loaded and the word RUN typed on each, I just walked down
the line and pressed return on each and the effect worked. But if I let the PETs
run for even a few minutes the effect was lost, the arrows would be streaking
across PET 5 before they reached PET 4. They would land on target while they
were still on the previous screen. They would be enroute before the archer
released them. Most disconcerting. - Bill Batcher, Box 300, Lake Grove, NY
11755

Bill - That's a really creative idea. I know that the timing differs from PET to
PET but I don't know exactly why. Can anyone give a complete and understandable
exp 1anat i on? - Ralph

I have just purchased a ribbon re-inker for the Epson 80 (or Epson 100) and
it has proved to be a very useful piece of hardware. I have re-inked 5 ribbons
locally, and at about $4 per- replacement ribbon, it will pay for itself shortly.

I have also constructed a device which I connect across the IEEE buss. It
indicates the status of the buss by means of an inverter (7407) and a red LED
connected to each lead. After using it for a time, you can tell if the disk and
printer are working properly by watching the LEDs as they operate. The reason it
was built is that I have 6 units connected across the buss. - John J Schueler,
405 Coyote Rd., Sedona, A2 86334

John - The price of 4022 ribbons is really straining my tight budget to the
limit. The cost per ribbon is high and they only seem to last about a week. This
device sounds like a good deal if it is easy to use. - Ralph

After searching many different sources, 1 have been unable to find either of
the following:

The PAPER 6 Aug/Sept 1982

(1) A print using routine similar to Command-O's but without the limitation
o-f 79 characters and the -forced carriage return and line -feed. This command
could be called via "sys x;a$:b$,t,ay and would allow -for a -format string o-f
200+ characters -for 136 column printers. It would also have automatic rounding,
right justification o-f numbers, and the output would be true ASCII characters
-for use on an ASCII printer.

(2) A so-ftrom which can be used on the 8096.
Please let me know if you or any of your readers have such items and where they
can be obtained. - Lee H Crisler, 4848 Clinton Blvd., Jackson, MS 39209

Lee - I must admit that every time I format output I recreate my own messy,
BASIC formatting routine. A utility like you mention would be very handy but I
know of none. I'll also have to appeal to the readers on the second issue since
I do not yet have an 8096. - Ralph

In Volume 4, issue 1 on page 5 the code for identifying BASIC versions is
discussed. At location 50003 my PET has 130. This can only be seen in a monitor
dump since I get a 0 when I PEEK at this location. What version is that? My PET
is one of the original small keyboard versions. How many PET BASIC versions are
there? I've often wondered if there was a way to identify them all. - Stan
Logue, 4330 Mt Abernathy Ave, San Diego, CA 92117

Stan - As you pointed out in a letter to me, BASIC 1.0 would return a 0 for a
PEEK at any address from 49152 to 57599. Later BASICs (Upgrade or 3.0 and 4.0)
were changed to remove this protection. For all pratical purposes there are
three versions of PET BASIC as mentioned above. PEEKing at 50003 will return 0,
1, and 160 respectively for the three BASICs. In this way a programmer can make
his program "smarter". But the situation gets worse when you consider at least
three different screens; 9" 40 column, 12" 40 column and 12" 80 column. And
still worse when you realize the number of different keyboards; original
calculator style, and two version of the graphics and business keyboards. All of
the keyboards are decoded a little differently. Don't forget the case reversal
between the original PETs and all others! Couple this with around seven
different disk drives, numerous printers, the VIC, 64, and even newer models and
you have a software designers nightmare. - Ralph

Yes, this issue of The PAPER is late, but its arrival today is certainly
timely, at least for me. Today was the first time that the particular
combination of hardware and software I was using caused the version of Keyprint
I had been using to let me down. And along comes The PAPER with your Universal
Keyprint! However, whatever utility you are using to create your listings for
The PAPER must contain a bug. The tip was that the three references to the SGN
function (lines 190, 260, 360) did not contain the required parentheses. The
program works when I replace the references with >.

I can offer these two partial answers to Marg Farland's inquiry about
interfacing a "FAT-40" to a video monitor. The people at Virginia Micro Systems
distribute and interface for the 9" screen and hoped several months ago to have
one for the 12" screen. Another partial answer comes from page 34 of the
June/July issue of the Commodore magazine. According to this reference,
PDKE59520,12:PGKE59521,0 should allow the old interfaces to work. - John Best,
RD 3 Box 123, Jackson, NJ 08527

John - Thanks for the information. The only way many reader questions can be
answered is by other readers taking the time to do so. Thank you! Another
interface which 1 have seen working is from Batteries Included in Toronto.
However, as it comes it only works on Canadian TV's. You might ask American
Peripherals, 122 Bangor St., Lindenhurst, NY 12757, about this problem since
they seem to have the code to make the interface work. - Ralph

The PAPER 7 Aug/Sept 1982

Irate Epson Owners Reply

As I have said before, it is impossible -for me to check out every question,
complaint, problem and article we get. If I limited articles to those I could
check on the equipment at hand, the subjects would be somewhat limited. A few
readers have shared A.H. McCann problems with the Epson printer but many more
have had no problems at all. In an effort to correct any misconceptions left by
that article, here are a sample of the responses from readers. Please accept my
apologies for not verifying all articles before publication.

I have an Epson printer connected to my 4032 and SP9000 and have had no
trouble using the IEEE-488 interface and my homemade word processor. To get the
program to work I had to change only one number in the program. - John Schueler

Recently I installed an 8032 and Epson MX-80FT for one of the other
departments in my school system. I had some of the same bad experiences reported
by Tim Amodemo and A. H. McCann. I happen to like the Commodore 4022 very much,
and with the lack of clear instructions for adjusting the Epson, I was cursing
whoever h,ad recommended a non-Commodore printer! Since the system had been
purchased' from AB Computers I called them. They advised me to return the dip
switch settings to those recommended in the instructions, to use a printer file
numbered higher than 128, and finally to include “Ifl" among my formatting
commands when using WordPro. This proved to be perfect advice. Since using
OPEN130,4:CMD4 is transparent to the Commodore printer I now use the larger
number no matter what printer I am using. I must admit that I was so impressed
by the added capabilities of the Epson over my Commodore 4022 when I finally got
it working that I traded the 4022 in on an MX-100. - John Best

I'm writing to give a necessary rebuttal to the article "Beware the Epson
Jaberwock", in which author A.H. McCann concludes, "...don't buy the Epson
IEEE-488 I/F board if you want to use a word-processing program." The fault is
in his word processor, WordPro II, not in the interface board. The board is
designed to handle an IEEE-488 input of true ASCII characters, and is quite
competent to do so. However, the PET's output is neither true IEEE or ASCII. The
problem he is experiencing is with the non-ASCII code. It's too bad he spent
$129 for an interface to solve something which should have been solved by his
word-processing program, but then WordPro II is obsolete and not supported by
Commodore. Any proper word-processor which is intended to be used with different
printers will have a startup questionnaire designed to elicit from th user the
necessary information to determine how to handle the carriage return and IEEE
compatibility problems, and will then make the necessary corrections
automatically. In fact, even WordPro II, as bad as it was, had some hoked-up
provision, requiring the loading of a program called "asc editor" from the disk
before preceding. A check of the instruction book will probably show a reference
under "Output Options". As for Gary Brooks, who is apparently making money out
of other people's ignorance, I don't blame him: waht else is new? In conclusion,
I will say that it is ridiculous for Epson not to explain the situation in their
literature, but except for that, they are not at fault.

For experimenters and auto-flagellants, the following algorithm will
correctly translate all PET screen codes for ASCII characters to approved ASCII
code and will handle all the shifted keys except pi:

A= < 63 AND P) + 2*(<64 AND P) + 2*(<N0T P) AND 32)

Of course, one wants to do this in machine language, where it is simply a bit
juggling act. - Frank Chambers, Rock House, Ballycroy Westport, Co Mayo, Ireland

The PAPER 8 Aug/Sept 1982

1 really do not take exception to much o-f Mr. Chambers letter. His comments
are correct -for his wordprocessor, "Papermate", and his Commodore equipment. It
is true that some new word processing programs now have the capability o-f making
conversions -for ASCII printers. My situation and comments were based on my
desire to use my 2023 printer and the Epson MX-80 FT printer simultaneously. I
also wanted to continue usinng the WordPro II which I had installed in my
CBM 2001-32B. The WordPro was meeting my needs -for word processinng and I was
sat i s-f i ed w i th it.

The main advantage o-f the inter-face I purchased -from Gary Brooks is that I
can have two printers connected simultaneously, the Commodore printer as device
#4 and the Epson as device #5. My greatest -frustration was with the
Epson User's Manual which gave no use-ful instructions -for installing and
operating their printer with a Commodore computer system. - A. Hews McCann, 3430
Frankfort C t ., Oxnard, CA 93033

In response to the question -from Stan Spence on blanking the screen o-f the
8032. Try POKE59520,1:P0KE59521,0 to blank the screen and
POKE59520,1:P0KE59521,40 to restore it to normal. All the screen -functions on
the 12“ screens are handled by the 4845 controller chip, which I would like to
say I understand -fully but don't. However I recommend that E V E RYWE buy a copy
of PROGRAMMING THE PET/CBM by RAETO WEST.

I also have source code for Basic Aid and can make a version for any model at
any location. This has the CRT or screen dump in it plus lots, lots more. Send a
disk in a reusable mailer with return postage and label. Be sure to specify CBM
printer or ASCII. Disks will be 4040 format. I can make a version of Micromon
the same way. Be sure you state where you want it located.

Daniel Condon should get in touch with Clark Stewart, 104 Henrietta St,
Ravenswood WV 26164 <304/273-4680). Clark has been on the air for sometime with
his PET and has two different nets up on weekends.

Having trouble with VIC programs ? Especially those that run only in the
original 5K ? Make friends with a PET owner. The extra memory and the resident
monitor make a good place to look them over. You won't be able to run them there
but can use Toolkit, Micromon, etc., to work them over.

I will be glad to take a shot at any 8032 questions or problems. - Jerry Key
141 Flint Ridge Dr., Columbus OH 43230 <614) 475-6060

Jerry - Thanks for all the information. Here is another reader and author who
takes the time to let others in on what he knows. - Ralph

The Trace program by Brett Butler found in COMPUTE's First Book of PET/CBM
<p. 153) and in PET Subroutines by Nick Hampshire doesn't work on BASIC 4.0.
Make the following changes in DATA statements for BASIC 4.0 use:

line #11 <COMPUTE) or #20 Hampshire) - 249, 224 to 153, 211
line #14 <COMPUTE) or #50 Hampshire) - 121, 197 to 240, 181
line #25 <C0MPUTE) or #160 Hampshire) - 145, 192 to 177, 176
line #26 <C0MPUTE) or #170 Hampshire) - 145, 192 to 177, 176

For a quick conversion of Charles Brannin's Quadra-PET in the same COMPUTE
anthology <p. 163), make the following changes. - Kenneth Stein

1 ine #1020 - 28, 202 to 29, 187
1 ine #1070 - 119, 197 to 238,181

Kenneth - Another note of thanks to a reader. These are two programs I would
never have even thought to look at since I use neither. - Ralph

The PAPER 9 Aug/Sept 1982

Backonoun e cm o u n d

This section includes announcements, short notes and comments that have been
picked up since the last issue.

New Word Processor

A new word processor -from England called SuperScript will soon be available
in this country. The program is completely compatible with WordPro but offers
some interesting additional -features. The disk is uncopiable but no protection
chip is needed and one version o-f the program will work on BASIC 3.0 or 4.0, 16K
or 32K and 40 or 80 column machines. Editting and -formatting are much the same
as WordPro with some added -flexibility. Six printers are "officially" supported
but others work very nicely and the company seems willing to include others. The
ability to load and save ASCII files, send true escape codes, and have at least
1/2 again as many lines of text are but three of the attractive features of this
package. The price for two disks and a professional tutorial and reference
manual will be $250 with substantial discounts for educational institutions. A
large dealer/distributor network will provide customer support and replacement
disks. A data base management program to use with SuperScript will be available
in the first quarter of 1983. Call or write Centerbrook Software, Box 460,
Livingston Manor, NY 12758, (914) 439-3591 for more information.

New York Educational Conference

The New York State Association for Educational Data Systems will hold its
17th annual conference November 7 - 9 at the Americana Inn in Albany. The theme
of the conference is "Moving Ahead with Educational Computing". There will be
five different sessions covering the major microcomputers used in the classroom,
how computers are used and the software needed to make them operate. In addition
there will be two keynote speakers and an all day vendor display on Monday,
November 8. A special feature will be Jim Butterfield's all day machine language
workshop on Sunday, November 7. For more information contact Don Ross, Ardsley
HS, 300 Farm Rd., Ardsley, NY 10502

Does Your PET Talk?

Learning Tree Software, Box 246, Kings Park, NY 11754 has developed several
complete series of “naturally voiced" programs aimed primarily at the lower
elementary grades. What this company has done is to design a tape deck which
will load PET programs and playback a recorded voice. After the program has been
loaded, commands within the software control when the tape deck is turned on and
off to play the prerecorded speech. The programs are highly graphic and many
make use of a light pen. The demonstrations I saw were very impressive and
worked well. The price of the tape deck is $175, the light pen is $38 and a 20
program series goes for $400. Programs may be purchased separately for $25.

Publi c Dotnai n

We all know what this term means but it is also the name of an Ohio group
which proposes to take on the giant task of organizing ALL public domain PET
software. The concept is simple. The group is asking any users group or
individual with programs to send them their disks. Programs will be evaluated
and cataloged onto various disks. The group will pay for any copying costs
involved when you send them your disks. Once the disks are organized they will

The PAPER 10 Aug/Sept 1982

be available -for $10 each to cover postage and handling.
This is a necessary task but one that has been undertaken without much

success before. The goals are admirable and the service is needed if done
correctly. Only the best o-f a particular type o-f program should be included and
care-ful culling must be done. For more in-formation contact William Munch, 5025
S. Rangeline Rd. , West Mil tom, OH 45383

VIC Plotting Prooram

Anyone with a VIC-20 or Commodore-64 and 1515 printer should appreciate this
new "High Resolution Plotting Routine". It will plot the results o-f user
supplied -functions, programs or data logging routines. Size o-f the plot and
automatic scaling with number labels and tic marks are user adjustable. The
program uses 72 dots/inch horizontally and 63 vertically -for the highest
resolution available. The sample plot sent me was very nice. The price is $10
■from Scientific So-ftware, Dept. E, 525 Lohnes Dr., Fairborn, OH 45324

New from CGRS Microtech

The makers of the fastest PET disk, PEDISK, have several new products to make
note of. Color Chart is a color video generator board which allows the PET to
produce 8 colors, alphanumerics and hi-res graphics on an external color
monitor. The board plugs into a 4K ROM socket and appears as 4K of RAM. Several
different modes of operation include a 32 by 16 alphanumeric display and a 128
by 192 full graphics mode. The price is $139.95. Watch for more developments in
this area.

Portmaker is a small dual serial port 1/0 board that plugs into the
ROM socket of a PET to add serial RS232 capability. A RCBI socket on board allows
use of all but the top 16 bytes of the original ROM. Available along with this
hardware is the Standard Terminal Communications Package for Eastern House
Software that converts the PET into a data management center. Disk files can be
serially transmitted and received data can be recorded on disk or printer with
complete control of all peripherals. A real time clock with display and alarm is
included, the Portmaker hardware is available for $69.95. The complete COMPACK
package including Portmaker, cable and the STCP software is $129.95. Contact
CGRS, PO Box 102, Langhorne, PA 19047 for a package that may solve most of your
communications problems.

Educational Activities

These are something that should happen in all schools and they are made
easier by a company with the same name. This company has a large selection of
computer software, books and filmstrips developed by teachers in the field. I
know many of the authors and their materials are some of the best around and are
summarized in a new catalog. Send for it to Educational Activities, Dept 83A, PO
Box 392, Freeport, NY 11520.

Directory of Educational Computing

This is not a new job but a publication of Classroom Computer News. The
Directory is filled with over 200 pages of descriptions of periodicals,
professional associations, on-going projects, funding, and many sources of
ideas, information and materials. A group of concerned educators has compiled
over 1000 listings arranged for easy reference. Guidelines are provided for

The PAPER 11 Aug/Sept 1982

hardware and software evaluation and selection, and a complete yellow pages
lists computer services and products. A local and regional catalog of
organizations using the same brand of computer is also featured. For pricing and
where to obtain your copy contact Classroom Computer News, 341 M t . Auburn St.,
Watertown, MA 02172

InfoAoe

This is a new Canadian computer magazine which has disappointed me from the
first issue. It is slick and does contain general information and techniques but
nothing really specific. Those that favor this approach will find InfoAge
interesting but the treatment has left me flat. Right now it is being published
bimonthly and costs only $20 for 12 issues. Send to InfoAge, 211 Consumers Road
Suite 302, Willowdale, Ont CANADA M2J 9Z9 for more information.

The Jefferies Report

Ron Jefferies had a real winner in CURSOR but I'm afraid his latest venture
falls short of this mark. The newsletter is published monthly, is mailed first
class for $30 a year which may be somewhat steep for six pages per issue. The
weakest part of the newletter is that most of the news has already been reported
in equal depth in other publications like InfoWorld. Ron does get some "hot"
inside information at times and I like his writing style. As far as I know, Ron
is the only writer which was his intent from the start. There are no ads to take
up space or make the publication dependent on anyone which also contributes to
the higher cost. The newsletter does not concentrate on the PET/CHi but treats
it fairly and after two months seems to have no bias. My suggestion is to try 6
months and see how you like it. Contact the Jefferies Report, Box 6838, Santa
Barbara, CA 93111 .

Transactor Resurrected

After a short absence which caused sleepless nights for many users Carl
Hildon has reformed The Transactor uder the auspices of Canadian Micro
Distributors. Carl believes the new sponsorship will in no way affect the
excellent quality of this technical newsletter and he has already planned bigger
and better things. After leaving Commodore, Carl will be able to devote more
time to a new glossier and reference oriented publication. A subscription to
Volume 4 is only $15. Send to The Transactor, Canadian Micro Distributors, 500
Steeles Ave, Milton, Ontario, CANADA L9T 3P7

COMAL is VERY Alive and Well

Although COMAL has been slow to catch on in the US, it is already the
standard language taught in both Ireland and Denmark with possibly England and
Sweden to follow soon. As of May 1982, there is also an official COMAL standard
called The COMAL KERNAL which will make versions of COMAL running on different
machines more compatible. There are also several newsletters and books including
a book published by Reston and authored by Len Lindsay <300-400 pages with 100
sample programs). The new COMAL version 0.12 will soon be available as well as
1.02 which will contain the complete KERNAL but only run on the 8096. The COMAL
Catalyst is a most valuable newsletter with news, tips and programming
information including tutorials by the original author of COMAL. For information
write COMAL CATALYST, 5501 Groveland Terrace, Madison, WI 53716.

The PAPER 12 Aug/Sept 1982

Mach i ne La.naua.ge ■for Beginners-; Ra.rt ^

by Ralph Bressler

This is the -fifth and de-finitel y the last in a series o-f articles dealing
with programming and techniques in machine language. Lately, I have had to
borrow too many o-f my examples -from others or contrive ones which I really don't
use. This comes from the fact that I am trying to explain and illustrate
techniques which I have just learned and seldom use.

As I mentioned in the last article, everyone who is serious about programming
in machine language should have a copy of one of the monitor extensions such as
Supermon. The mini-assembler in these packages makes entering code much easier
and the disassembler allows you to see the assembly code for any machine code in
any location. As programs get longer, it is almost imperative that you also have
an assembler. Even small and simple assemblers allow you to save your source
code for later inspection and modification. They allow comments to remind you of
what you were doing and permit you to place your code where you like with few
restrictions. So many assemblers are now available that choosing one can be
difficult. For beginners, the primary criteria is that the assembler should be
inexpensive but easy to use. If you become a dedicated ML hacker then you can
buy a more expensive and more versatile program. In any case, there are many
topics still to cover so let's get started.

First, I have two "assignments" to give the answers to. One problem was
getting our addition program from last time to handle higher math like 9 + 3 =
12. You may remember that answers greater than 9 were a problem. We still will
only attempt to add single digits but we should be able to handle double digit
answers. Since the change in the code is minor, I will give only the part of
the program where the changes begin. This is shown below:

1 i ne addr code 1 abel mnemon i c

432 03BD C9 0A CMP #$0A
434 03BF 90 09 BCC SKIP
436 03C1 E9 0A SBC #$0A
438 03C3 AA TAX
440 03C4 A9 31 LDA #$31
442 03C6 20 D2 FF JSR WRT
444 03C9 8A TXA
446 03CA 09 03 SKIP ORA #$30

comment

COMPARE TO 10
IF LESS THEN GO ON
ELSE SUBTRACT 10
STORE RESULT
LOAD A W/ 1 AND
...PRINT ON SCREEN
RECALL PREVIOUS RESULT
CHANGE TO ASCII

Everything before and after this is the same as in the original program. What we
have done here is really quite simple, after doing the addition we compare the
answer to 10 in line 432. If the answer is less than 10 <the carry is clear), we
do exactly what we did before. When the number is 10 or greater, we subtract 10
(line 436), store the result (line 438), print a 1 (lines 440 and 442), recall
the previous result (line 444) and convert it to ASCII and print it as before.
Again, this technique is not meant to be universal but works for this situation.

Another problem we mentioned last time was the creation of a cursor
positioning routine. Let me emphasize that this is an exercise to try to do in
machine language what is easy to do in BASIC. Several articles have appeared
elsewhere lately giving elaborate cursor positioning routines to use in BASIC
programs. This is nonsense since BASIC can do it much easier. Some of you may
know that there are locations which may be POKEd in BASIC to position the
cursor. These should not be used in BASIC or machine language programs as they
may change from one version of BASIC to another. The routine below uses two
simple loops to get the cursor where we want it.

The PAPER 13 Aug/Sept 1982

100 ;CURSOR POSITIONING
110 ;
120 WRT=$FFD2 ; WRITE CHARACTER TO SCREEN
122 OVER=$BA ; STORE # OF SPACES TO GO TO RIGHT
124 D0UN=$B9 ; STORE # OF LINES TO GO DOWN
130 ;
140 *=$0375 ; BEGINNING ADDRESS OF ROUTINE
145 ; USE JSR $0375 OR SYS 885

l i ne addr code labe l mnemonic comment

160 0375 A9 13 LDA #$13 LOAD ACC WITH "HOME"
170 0377 20 D2 FF JSR WRT ...AND PRINT IT
180 037A A6 BA LDX $BA LOAD X FROM "OVER" LOC
190 037C A9 ID LDA #$1 D LOAD A W RIGHT CURSOR
200 037E 20 D2 FF L00P1 JSR WRT ...AND SET LOOP TO PRINT
210 0381 CA DEX ...IT UNTIL
230 0382 DO FA BNE L00P1 ...CURSOR IS POSITIONED
240 0384 A6 B9 LDX $B9 LOAD X FROM "DOWN" LOC
250 0386 A9 11 LDA #$11 LOAD A W DOWN CURSOR
260 0388 20 D2 FF L00P2 JSR WRT ...AND SET LOOP TO PRINT
270 038B CA DEX ...IT UNTIL
290 038C DO FA BNE L00P2 ...CURSOR IS POSITIONED
520 038E 60 RTS RETURN TO CALLER

This routine is sel-f explanatory and well commented. Notice that is uses only
the ROM-based WRT subroutine which has stayed the same on all Commodore products
so -far. Location $BA is used to store the amount we want to move horizontally
while $B9 stores the vertical movement. Any -free locations could be usecf.

Last time we introduced and made extensive use o-f subroutines. Some routines
are ROM-based and make our jobs easier. We also create and use our own routines
particularly as our programs grow larger. An explanation o-f how the PET handles
subroutine calls was given last time and you should remember that the address to
which the PET will return when done with the routine is stored on the stack.
Actually, the address minus one is stored so that when the address is "popped"
o-f-f the stack and placed in the program counter, the counter may be incremented
as usual to get the "real" address. Keeping this in mind, we should be able to
alter this “return address" i-f we wanted by using push and pull commands. In
this way we could jump to almost any location we wanted. The example below is
contrived but illustrates the method. In this short program we use our own
subroutine which checks to see i-f we press a numeric key. I-f we do, the routine
returns normally and clears the screen. I-f we press anything but a number the
return address on the stack is altered to avoid the clearing o-f the screen.

line addr code label mnemonic comment

100 ;PROGRAM TO ILLUSTRATE THE STACK
110 ;AND RETURN ADDRESSES FOR ROUTINES
120 !
130 *=$0390
140 5
150 0390 20 99 03 JSR PSHNLIM ;ROUTINE CHECKS NUMBERS
160 0393 A9 93 LDA #$93 ;LOAD A WITH CLEAR SCREEN
170 0395 20

CM
C

i FF JSR $FFD2 ;...AND PRINT TO SCREEN
180 0398 60 RTS ;RETURN TO BASIC
190 !
200 0399 20 E4 FF F’SHNUM JSR $FFE4 ;GET A CHAR FROM KEYBOARD
210 039C F0 FB BEQ PSHNUM ;LOOP UNTIL KEY PRESSED

The PAPER 14 Aug/Sept 1982

220 039E C9 30 CMP #$30 CHECK TO SEE IF KEY WAS

230 03A0 90 05 BCC OVER . . .LESS THAN OR

240 03A2 C9 3A CMP #$3A ...GREATER THAN A NUMBER

250 03A4 B0 01 BCS OVER ...AND IF IT IS NOT THEN
260 03A6 60 RTS ...RETURN IMMEDIATELY
270 03A7 68 OVER PLA IF NOT A NUMBER THEN
280 03A8 68 PLA . . .PULL OFF THE RETURN
290 03A9 A9 03 LDA #$03 ...ADDRESS AND PUSH
300 03AB 48 PHA .. .ON A NEW ADDRESS

310 03AC A9 97 LDA #$97 .. .AVOIDING THE CLEAR
320 03AE 48 PHA ...SCREEN OPERATION
330 03AF 60 RTS ...COMPLETELY

To try this out use SYS 932 and experiment with pushing numbers and
non-numerics. Notice that i-f we do not press a number we want to return to
$0398. To do this we push $03 and $97 on the stack so that they end up in
typical high byte-low byte form. When RTS is encountered this address is placed
in the program counter and incremented to $0398.

When coding machine language programs it is best to keep in mind that you or
some other programmer may eventually want to move the program to another
location. This is called relocation and the fewer the number of changes you have
to make the better. This means that, in many cases but not all, the simplest,
most direct way is best. Try to avoid unnecessary subroutines and jumps to
locations within the program and be careful of using too many "cute" tricks.
Attempt to use mostly branch commands even if they take a little more code. Here
is an example of what I mean:

033A LDY #$00 033A LDY

oo

033C TYA 033C TYA
033D LDX #$00 033D LDX #$00
033F STA $8000,X 033F STA $8000,X
0342 I NX 0342 I NX
0343 BNE $033F 0343 BNE $033F
0345 I NY 0345 I NY
0346 BNE $033E 0346 BNE

LUCOCOo**

0348 JMP $033A 0348 BEQ $033A

The program on the left uses a JuMP instruction to set up an infinite loop much
as one would in BASIC. But this technique ties it to location $033A. The same
program on the right uses a branch instruction to obtain the same result but is
not tied to any specific location. The program on the right is “completely
relocatable". This seems trivial but too many "mistakes" like this make
relocation unnecessarily difficult.

One of the real problems that faces a machine language programmer is where to
put his program. If you are working only in machine language, then you can put
the program almost anywhere. In fact, to allow the most space and to make it
easy to save and run you would probably put it where BASIC normally resides.
You could start at $0400 and work up to the memory size of your machine. If you
do start at $0400, then the user will have to remember to type SYS 1024 every
time he uses the program. Many machine language programs start with a SYS and
then all the user has to do is type RUN. Enter 10 SYS(1039) as a BASIC line
exactly as it appears. Now enter the machine language program below starting at
$040F.

100 040F A9 93 LDA #$93 jLOADS A WITH CLEAR SCREEN
110 0411 20 D2 FF JSR $FFD2 jWRITE CLEAR TO SCREEN
120 0414 60 RTS ;RETURN TO CALLER

The PAPER 15 Aug/Sept 1982

Now when we save the screen we use the monitor to save the BASIC line and the
machine language. Remember to save one byte beyond the end o-f the program. It
would look like this for tape #1: .S "CLEAR",01,0400,0415 or this for disk drive
0: .S "0:CLEAR“,08,0400,0415 . Now when you load this program again the BASIC
line and machine language will load normally and you can even resave it without
the mon i tor.

This is fine for machine language only but most programmers combine machine
code with BASIC. When you do this you may store the machine code in three
different places, each with its own advantages and disadvantages.
Until just lately many useful routines were stored in the cassette buffers.
Each of these is 192 bytes long which is good for short, useful routines. If
you were using a disk drive you could use both cassette buffers or if your
system was tape based you could use the second cassette buffer. This was a
problem since you could not be sure what kind of system another user who might
want to employ your routine had. With the coming of BASIC 4.0 and the FAT 40
even the second cassette buffer became crowded. Besides all those useful
rotuines all located in one area of memory, this buffer is now busy keeping
track of DOS commands and tab stops.

Many people have now taken to storing their machine language routines at the
top of memory. This allows quite a bit of space even in 8K and is not affected
by operations from BASIC. This area is good for routines you want present from
the time you turn the machine on. Several problems plague this method also.
First, as more people switch to this method, the more crowded even this area
will become. It is possible to load one routine after another and keep moving
down in memory providing the programmer took the care to make this possible. A
bigger problem is that the top of memory varies with the memory size of the
machine. It is not too easy to write a machine language program that
automatically relocates itself to the top of any memory. These routines must
also be loaded carefully and the top of memory pointer must be set down each
time to protect the area from BASIC. Of course, lengthy routines will make the
space for BASIC programs and variable storage smaller.

Another place to put your machine language routines is right after your BASIC
program before the storage of variables. This is perhaps the most difficult
method to implement since it requires very careful set up. You will, of course,
have to call your routine with a SYS from your BASIC program. Any small change
in that program will cause the machine language program to shift and your call
via SYS may no longer be to the correct address. Also, as the program shifts
any references to addresses within the program may be incorrect. This method
does allow normal loading and saving of both the BASIC and machine language
parts. It also means that the program will load into any size memory providing
it is big enough with no special provisions for relocation or changes in any
pointers. Our next program will use this technique but before we attempt it we
need to introduce two more topics.

There are four commands which we have not yet dealt with which can prove
useful. These commands rotate or shift the bits in a number left or right. The
four commands are:

ASL - arithmetic shift left LSR - logical shift right
ROL - rotate left ROR - rotate right

The differences in these commands are best shown using examples. These commands
can act on the contents of the accumulator or any selected byte of memory. All
of these instructions affect the carry, sign and zero flags of the status
register.

ASL shifts all bits one place to the left, places the contents of bit 7 in
the carry, and places a 0 in bit 0. An example might be as follows:

The PAPER 16 Aug/Sept 1982

before: C=0 0 1 0 0 1 1 0 1 = 77
after : C=0 1 0 0 1 1 0 1 0 = 154

Notice that the effect of one ASL is to multiply the number by two. Also, the
sign bit would be set, zero bit reset and the carry bit reset as shown.

LSR shifts all bits one place to the right, places a 0 in bit 7, and places
the contents of bit 0 into the carry. An example might be as follows:

before: C=0 0 0 1 1 0 1 0 0 = 52
after : C=0 0 0 0 1 1 0 1 0 = 26

Notice that the effect of one LSR under some conditions is to divide the number
by two. Also, the sign bit is always set to 0, zero is set to 0 and carry is
set to 0 as shown.

ROL is similar to ASL except that the contents of the carry are rotated into
bit 0 instead of a 0 as with ASL. An example might look like this:

before: C=1 0 1 1 1 1 0 1 0 = 122
after : C=0 1 1 1 1 0 1 0 1 = 250

Here, the sign bit is set to 1, zero is set to 0 and carry is set to 0 as shown.
ROR is similar to LSR except that the contents of the carry are rotated into

bit 7 instead of a 0 as with LSR. An example might look like this:

before: C=1 0 1 1 1 1 0 1 0 = 122
after : C=0 1 0 1 1 1 1 0 1 = 201

Here, the sign bit is set to 1, zero is set to 0 and carry is set to 0 as shown.
A final topic must be presented before we create our next sample program. If

we truly want to interface BASIC and machine language we should be able to pass
variable values from BASIC to our ML program, process those values and retrieve
them for use again by our BASIC program. To do this we must know a little about
the storage of variables in the PET. All variables are stored as 7 bytes no
matter what type or what their value is. The first two bytes are the name of
the variable modified suitably so the PET will know if it is a floating point,
integer or string variable. Floating point (numbers with fractional parts are
stored in floating point notation which is not easy to comprehend. What is
stored for strings is not their value but a pointer to where they are located in
high memory. This leaves integer variables which are easiest to understand.
After the first two bytes which are the variable name, the next two bytes are
its value with the final three bytes remaining unused. The value is stored in
two's complement form in high-byte, low-byte order so that bit 7 of the third
byte indicates the sign of the number. A pointer at 002A and 002B (007C, 007D
in BASIC 1.0) indicates the start of variable storage. This pointer points to
the first character in the name of the first variable stored. The pointer plus
one points to the second character, plus two to the high byte of the value and
plus three to the low byte. If we store the variable we want to work with
before any other and as an integer, then we will be able to easily pass the
value to a machine language routine. The routine can then process the value and
store the result somewhere or even change the value of the variable by storing
it back where it came from. We are now ready to start our program which will
allow the user to enter a number from BASIC, call a machine language routine to
multiply this number by 8 and then go back to BASIC to retrieve and finally
print the result. The machine language program will be stored after our BASIC
program starting at $0490 and will use ASL and ROL to do the multiply. First,
let's write the simple BASIC program:

The PAPER 17 Aug/Sept 1982

10 X'/.=0
20 INPUT "NUMBER";X%
30 SYS<1168)
40 PRINT “...TIMES 8 IS";XX
50 GOTO 10

Line 10 makes sure that our variable XX gets stored as the very -first variable.
We will now write our machine language program at $0490. Remember that once
this is in place we cannot change our BASIC program or we will also have to
change the SYS call in line 30. Our machine language program is well commented
and here it is:

100 ;GETS A INTEGER VARIABLE STORED BY
110 ;BASIC AND MULTIPLIES IT BY EIGHT.
120 !
130 TEMPL =$033A ;LOCATION FOR STORAGE
140 TEMPH=$033B ;L0CATI0N FOR STORAGE
150 *=$0490
160 *>
170 0490 A0 03 LDY #$03 LOAD Y TO USE AS INDEX
180 0492 B1 2A LDA ($2A),Y GET LO BYTE OF VARIABLE
190 0494 8D 3A 03 STA TEMPL STORE FOR USE LATER
200 0497 88 DEY DECREASE Y
210 0498 B1 2A LDA ($2A),Y GET HI BYTE
220 049A 8D 3B 03 STA TEMPH STORE IT NEXT TO LO BYTE
230 049D A2 03 LDX #$03 SET X AS COUNTER
240 049F 0E 3A 03 LOOP ASL TEMPL SHIFT LO BYTE LEFT
250 04A2 2E 3B 03 ROL TEMPH ROTATE HI BYTE LEFT
260 04A5 CA DEX DECREASE X
270 04A6 DO F7 BNE LOOP IF NOT DONE THEN LOOP
280 04A8 A0 03 LDY #$03 IF DONE SET Y AS COUNTER
290 04AA AD 3A 03 LDA TEMPL GET PROCESSED LO BYTE
300 04AD 91 2A STA ($2A),Y STORE BACK AT ORIGIN
310 04AF 88 DEY DECREASE Y
320 04B0 AD 3B 03 LDA TEMPH GET PROCESSED HI BYTE
330 04B3 91 2A STA ($2A),Y STORE BACK AT ORIGIN

340 04B5 60 RTS RETURN TO BASIC

Here, in lines 170 to 230 we get the low byte which is at pointer plus 3 and
store it in a tempoarary location. When we decrement Y we can then get the high
byte -from pointer plus two and store it temporarily. The loop -from 240 to 270
shi-fts the low byte le-ft and then rotates the high byte le-ft -for a total o-f -four
times. This accomplishes the multiplication by eight. We rotate the high byte
because we want to bring in the carry which was a-f-fected by the shift o-f the low
byte. Finally, we recall the processed low and high bytes and store them back
where they came -from and return to BASIC.

A careful study of this program reveals that we have used many new techniques
and ideas. As always, I suggest you make some changes and see what happens to
the BASIC and machine language programs and the results obtained. First, try
adding a line 5 with just a REM statement. Now use SUPERMON or the PET's
built-in monitor to see what happened to the machine language program. Can you
see how it moves up some in memory? Remove the line you added and look at the
machine language portion again. What happened to it? Is it back where it
started? It is relatively easy to multiply a number by a multiple of two. All
you have to do is shorten or lengthen the loop in lines 240 to 270. Change the
program to multiply the number by 10. To do this you multiply by two, store the
result, do the multiplication by eight and add the two for the final
Accessing a variable other than the first is easy unless you get fancy.

resu1t

The PAPER 18 Aug/Sept 1982

A H this talk about moving programs around and storing them in different
locations makes me want to reissue a warning. Try to program so that your code
can be easily moved from one set of locations to another. This means that you
should try to avoid jumps and use branches wherever possible. Jumps tie your
program to one set of locations while branches with their relative addressing do
not change when the program is moved. This, of course, is not always possible
since branches have limited range. Try to steer away from subroutines in your
program unless they increase the speed or performance significantly. Try not to
use "cute" techniques like interrupts or wedges when others will do. If you
stick to these suggestions, you will make your programs easier to transport from
one location to another. Some short routines can be made totally relocatable
with little effort.

There are two other topics which I would like to cover; interrupts and
"wedges". Both of these have been covered before in this newsletter but I feel
they should be mentioned here. Both of these techniques allow you to add
functions to your PET and its BASIC but both need careful planning. Sixty times
each second the PET interrupts what it is doing to do many important functions
like checking the keyboard and updating the clocks. We can intercept this
interruption and make the PET perform a function we want it to before it does
its own work. This is called an interrupt driven program. The wedge technique
gets its name from the fact that we shoehorn it into several locations in page
zero. Whenever you hit RETURN to execute an immediate command or when a program
is running a part of code called CHRGET (character get) is executed to get the
next character from the line being executed. Eventually a command gets performed
when it is recognized or a ?SYNTAX ERROR is issued if it is not. We can again
intercept this function and direct the PET to scan our code first to see if the
command is part of our program. If it is then our command is performed and then
the PET goes on with its own checking. I am fairly well acquainted with the
operation of interrupts but have only a passing knowledge of "wedges". Both of
these techniques are advanced and may never be used by beginning programmers.
However, when analyzing some of the programs which are published you will find
them and it might be nice to at least recognize them.

The following program allows you to constantly display any page (256
locations) of memory at the top of the screen. This can be interesting
especially if you use page 0 since you can see many important locations change
as you do various things. There is a pointer at locations $90 and $91 that point
to the normal interrupt routine at $E455 ($E26E in BASIC 2.0). We must change
this pointer to point to our program and, then, at the end of our program we
must jump to this routine so the PET can carry out its normal operations. When
setting the pointers to our routine we must stop the normal interrupt procedure.
If we do not do this the interrupt routine may strike before we complete the
change and jump to some unknown location. Here is the program:

110 :DISPLAYS ANY PAGE OF MEMORY
120 ;CONTINUOUSLY ON THE SCREEN.
130 ;TYPING LOAD WILL DISABLE PRG
140 ;USE POKE 927,X TO CHANGE PAGES
150 ;WHERE X IS THE PAGE NUMBER.
160 I
170 *=$0390
180 ■i
190 0390 78 SEI SET INTERRUPT DISABLE
200 0391 A9 9B LDA #$9B . . .AND SET UP VECTOR
210 0393 85 90 STA $90 . . .TO POINT TO OUR
220 0395 A9 03 LDA #$03 . . .SHORT PROGRAM AND
230 0397 85 91 STA $91 ...DO IT FIRST
240 0399 58 CLI ENABLE INTERRUPTS AND
250 039A 60 RTS ...RETURN TO BASIC

The PAPER 19 Aug/Sept 1982

270 039B A2 00 LDX #$00
280 039D BD 00 01 LOOP LDA $0100,X
290 03A0 9D 00 80 STA $8000,X
300 03A3 E8 INX
310 03A4 DO F7 BNE LOOP
320 03A6 4C 55 E4 JMP $E455

ZERO XR AS COUNTER
LOAD FROM PROPER PAGE
STORE ON SCREEN
BUMP XR BY ONE
...LOOP IF NOT DONE
DO NORMAL INTERRUPT

To activate this program use SYS912. Try clearing the
is running. The screen WILL clear but will immediatel
o-f memory you are displaying.

Our -final technique deals with a wedge. Wedges can
add many di-f-ferent commands to BASIC. Our wedge will
sign is pressed and RETURN is hit the PET will go
monitor. To set up the wedge we insert a jump to our
the CHR6ET routine on page zero. This routine begins
three locations. All wedge programs do this and lik
replace what was there when we write our code. As
activated it will wait until a 3 is hit and then go i
program:

screen while this routine
y -fill again with the page

be incredibly complex and
be very simple. When the 3
to the machine language

program at the beginning o-f
at $70 and we use the -first
e all the rest we must
soon as this program is
nto action. Here is the

110
120
130
140

BREAKS TO MONITOR WHEN 3 IS HIT.
ACTIVATE WITH SYS912

*=$0390
150 ■

»
160 0390 A9 4C LDA #$4C
170 0392 85 70 STA $70
180 0394 A9 9D LDA #$9D
190 0396 85 71 STA $71
200 0398 A9 03 LDA #$03
210 039A 85 72 STA $72
220 039C 60 RTS
240 039D E6 77 INC $77
250 039F DO 02 BNE OVER
260 03A1 E6 78 INC $78
270 03A3 8C 7A 02 OVER STY $027A
280 03A6 A0 00 LDY #$00

290 03A8 B1 77 LDA <$77),Y
300 03AA AC 7A 02 LDY $027A
310 03AD C9 40 CMP #$40
320 03AF F0 03 BEQ BREAK
330 03B1 4C 76 00 JMP $0076
340 03B4 00 BREAK BRK

SET UP WEDGE JUMP
..BY REPLACING CHRGET
..CODE WITH JUMP
..TO OUR PROGRAM.
..WEDGE WILL THEN WORK
..WHENEVER 3 IS FOUND.

REPLACE CHRGET CODE
...DESTROYED ABOVE WITH
...ORIGINAL CODE
SAVE Y
ZERO Y FOR COUNTER
LOAD A USING Y AS INDEX
BRING Y BACK
CHECK FOR 3 SIGN
. . .IF IT WAS THEN BREAK
. ..IF NOT CONTINUE
BREAK TO MONITOR

This program is, perhaps, the simplest version o-f an extremely versatile
structure. Whole lists o-f commands like AUTO, REN and DEL can be created each
with its own distinct -function. O-f course, since BASIC has to search this whole
new command list things may slow down some but there are even ways to get around
this problem. Doug Haluza gave a more complete discusion o-f this technique with
a slightly more complex example in the last issue. Try reading this and then
start looking at some listing or disassemblies o-f programs that use the
techn i que.

This has been a long series drawn out over too long a time by our constant
problem with publishing on schedule. Many people have said this series has
helped them become a little less scared and a little more willing to work with
machine language. Writing it has helped me to gain new insights and to learn a
1 o t .

The PAPER 20 Aug/Sept 1982

Observat i ons on Volume 4. Issue 3

by Roy Busdiecker

WOW! It's hard to believe how much in-formation can be packed into one
publication! it's reached the point where doing this column in a reasonable
length o-f time has become a challenge. Thanks to Ralph -for his extra e-f-fort ...
my copy o-f this issue was an advance version, straight out o-f his printer.

Long Live Commodore

Apparently, I wasn't the only one whose -feathers were ru-f-fled by 'The Late
Great Commodore' editorial two issues ago. Ralph has done penance admirably with
his -follow-up piece. Wish we could have gotten the same kind o-f turn-around from
the -folks at The Code Works, who publish Cursor Magazine -for the PET/CBM ...
they've gone o-f-f the deep end and terminated that worthwhile resource with issue
#30. Their rationale was that a) they didn't charge enough at $4.95/issue, to
pay decent royalties to the software designers; b> it's too hard to create
programs for all the differnet versions of Commodore PET/CBM computers; c) the
Commodore-64 is where all the action will be.

My answers to those arguments are that a) with the excellent quality of
CURSOR, a price of $15 to $20 would not be prohibitive; b) it may be more of a
challenge to acommodate 40 or 80 columns, or basic 3.0 and 4.0, but if you know
that at the beginning of program design, it's not that difficult <don't bother
retrofitting the old ones!); and c) it's going to take a while for the
population of 44's to build up ... but there are a lot of PET/CBM's in the field
owned by quite a few loyal CURSOR customers!

It's good to see the response to Commodore's TV advertising. If they had been
this aggressive four years ago, I'm convinced PET/CBM would be the #1 seller in
the US right now. Wish we saw some more emphasis on the larger machines in the
ads, too ... VIC is good for many users, but others really need the "full-size"
models. Watching the stock market this past week, I saw Commodore stock go up
10‘A in an othwise listless market. Someone believes!

Responding to the remark about "one good word processor", check thiss the
March 82 issue of Popular Computing ran a comparison of word processors ... all
the popular machines, including CP/M ... guess which came out looking best!?
WordPro 4+ by Professional Software, Inc., running on the CBM 8032.

Backoround/Foreoround

The Mail-Order Menace note hit close to home. Having the experience of being
a Commodore dealer has given me a new perspective. If you want the covenience
and service of a dealer, you've got to be willing to pay for it. The reason a
mail order house can sell cheaply is because it avoids the expenses of
showrooms, clerks and customer education. If you don't need to see what you're
going to buy, if you don't need to ask questions or be helped in deciding on the
best system, then go mail order. Don't, however, use up the dealer's time
getting educated, then buy mail order, and expect your dealer to be waiting with
open arms when you show up for warranty repairs a week after the machine
arr i ves.

Are you serious about patenting software? Copyright may be "next to useless",
but it beats waiting seven years for a patent. How many programs would qualify
for patent? In either case, the only "protection" you get is a little more
advantage when you take the violator to court!

The PAPER 21 Aug/Sept 1982

Reader I/O

For Stan Spence, a question and a comment. When you ordered Supermon, did you
specify that you had an 8032? AB Computers is one o-f the best mail-order
suppliers ... Gene Beals knows his stu-f-f, and his company is reputable. Have you
called them? I'm con-fident they'll satisfy you.

Tim, regarding your problem with the MX-80... it's either switch settings in
the MX-80, or commands in WP3. I'm using and 8032 with wp4+ with no problems ...
will try the other combination and let you know how it works.

Please John Nuttall ... give us the price! I've been waiting for someone to
put out a PET graphics chip -for the MX-80 ... don't make us wait -for another
issue. Ralph, I'll even pay the $2 i-f you get the in-fo and publish it!

Daniel Condon: the hardware/so-ftware package to read (or transmit) RTTY (or
CW) is made by an outfit called MACROTRONIX ___

Bravo to Jim Strasma for his fervor and zeal in defending Commodore against
the slings and arrows of outrageous Bressler! I was very much tempted, Jim, to
write such a letter myself ... but I decided that the "Late Great Commodore"
editorial was so offensive to so many that it would ellicit scores of indignant
responses. One question: where can I buy a legal copy of 96k Visicalc? Yes, I
know it exists, but I'm told that VisiCorp (ex Personal Software) denies
knowledge of it! (Pub. Note: Jim now says that VisiCorp has graciously
acknowledged that it exists and will distribute it. Contact them!)

It was good to see Gary Stone's suggestion regarding the name, "The PAPER".
My suggestion would be to call it "The PET/VIC Paper" with a smaller caption
line covering "all Commodore computer products". It's disappointing to learn
that mighty COMPUTE considers the tiny PAPER to be a rival ... I've always
considered newsletters and magazines to be complimentary.

Marilyn Nicholson - don't throw away your old issues of The PAPER! I've had
many beginners report great success when they go back 3 to 6 months later and
re-read the articles they didn't understand earlier. The beginner's problem has
been described as being like trying to get a sip of water from a fire hydrant
... ther's just too much, coming too fast, to be able to get what you want!

Observations

Oops! Here's a typo I hope got fixed! Couldn't remember what and “inflation
loop" was ... turns out it had said "infinite loop" at first. Oh, well!

Oops 2! Haven't yet written the follow-up article. Too busy with income tax,
college aid forms, etc., etc., etc.!

Oops 3! Be careful what you plug into MTU sockets. ROMs like Visicalc are OK,
but EPROMS (many others) will be destroyed if plugged into that board. (Pub
Note: I have plugged several 2716 and 2532 EPRttls into this board for a short
time to record the code and have had no troubles. MTU does give a socket
modification if you ask them about the problem.)

New Products

The exciting news from Commodore at this moment (April 82) is the
Commodore-64, the 8250 disk drive, and the D9090 and D9060 Winchester drives.

At $595, the 64 should be a big winner. According to the Commodore fact
sheet, it has 64k memory, CP/M software option, RS-232, and enhanced audio and
hi-res capabilities, as well as the best PET/VIC features.

The 8250 is a double sided 8050, doubling storage to 2.1 megabytes (on two
diskettes) for only $2195, a cost increase of only 22/.! More exciting, it will
allow relative files over a megabyte in size (versus the 8050's 183 kilobytes).

The D9090 provides 7.5Mb hard-disk storage for $3495, while the D9060 gives
5.0Mb for $2995. Each claims an unlimited number of file names, and relative
files almost as long (98>i) as the total disk capacity.

The PAPER 22 Aug/Sept 1982

No Jabberwock!

It would be interesting to know where A H McCann lives, and whether he has a
Commodore dealer nearby. Being -forced to buy mail order is one thing ... but i-f
he chose to mail-order versus dealer purchase because o-f price di -f-ference, then
his is a sel-f-i n-f 1 i c ted wound.

In either case, his diatribe is uncalled -for! The combination o-f 2001-32B,
2040, MX-80 F/T, and Word Pro 2 <or 3) works just -fine! Why Mr McCann, did you
call Commodore and Epson but not Professional Software, manufacturers of Word
Pro? It's their software that makes the system work! Word Pro 2 has two main
programs .. Editor (for CBM printers) and ASC Editor (for all others). Very
simply, you were using the wrong program! EPSON'S IEEE board works fine, too. I
would be willing to wager that there are more MX-8G's being used with Commodore
computers and word processors than any other.

Hon i tor Th i s

Better article this time, Jerry ... just one or two comments.
Repeated use of Break (versus Call) entry does make a difference. Do it often

enough and you'll run out of stack storage space, and get an “OUT OF MEMORY"
error. Get in the habit of using SYS 54386 (BASIC 4.0) or SYS 64785 (BASIC 3.0)
all the t ime.

A nitpick: when you do a SAVE from the monitor, the SAVE COMMAND specifies
one location past the end of your program, but the data actually saved does not
include that extra byte.

Several other cautions: the first location of a machine-1anguage routine is
not always the SYS address to activate it. Also, combinations of BASIC and ML
can be saved from BASIC only if the combination starts at $0400. If the ML is in
the 2nd cassette buffer, you'll have to use the monitor to save the combination.

Armor Plate. No Less!

“Histogram", by Doug Haluza, might be more accurately titled “BASIC
Programming Techniques" ... if you failed to read the article, go back and do it
now. It's got a lot of good material in it.

Doug points out that a histogram is easier to interpret than a list of
numbers. The same can be said for most graphic displays ... including the simple
act of printing ANYTHING during a long computation, just to show that the
computer hasn't quit!

Providing a default input is an easy addition that makes the program a lot
"friendlier". Please, however, join my crusade to get instruction writers to say
PRESS return rather than HIT return. Novices tend to take instructions
1 i teral1y !

Forgiving mistakes is another essential ingredient of quality software
but it adds a LOT to the time it takes to build a program.

I'll argue with Doug's assertion that it's impossible to completely
bulletproof a program. It just takes a lot of testing, by experts. An example of
the technique is "Cheque-Check", marketed by MicroSoftware Systems, Inc. (I
designed and implemented the program.) My feeling is that total bul1etproofing
is worthwhile only for programs intended for use by novices. Some limited
protection should be applied to any program, though.

Regarding Device #3 (screen) and Device HO (keyboard), caveat all remarks
with "most times" or "usually". Using the file PRINT# and INPUT# invokes
routines that don't always work exactly the way you want them to. The technique
is good, but be prepared for some surprises.

The PAPER 23 Aug/Sept 1982

Random Thoughts

Mike Todd's <where have I heard that name before?) "final word" on the RND
function was a good article, and quite interesting. Final it is not! Encore,
Mike! Now that you've explained the "what" (rather briefly), explain the “why"
of those funny numbers. They must have some esoteric significance!

Relatively Accurate

Without detracting from the obvious value of Glenn Davidson's "Relative
Files: Part I", there are several things to be noted.

Sequential files will continue to be used, for several reasons.

a. There are still 2040's around.
b. A set of short sequential files can be accessed almost as quickly as a

1ong relative file.
c. Sequential files do not have a maximum size limitation, as do relative

files (the new 8250 will effectively do away with that limitation).

Item #4 in the "Keep in mind" list is incorrect. PRINTS does indeed move the
record pointer ahead one place each time it is used. INPUT# does so ONLY if
there are no CHR$(13)'s embedded in the record. Otherwise, the record pointer is
not advanced until all the fields in the record have been retrieved.

Say It In Machine Language

Hate to see the end of a good series but I hope Bressler's articles will be
followed up by some wel1-documented machine language programs.

Ralph, you keep tossing out fascinating hints, but failing to provide
details! What are the dozen good assemblers, who sells them, and how do they
differ? I've been using the ones from Eastern House Software, and been very
pleased with them. They're fast and offer a lot of features.

It would be helpful if you also presented each routine in its Monitor listing
form. That makes it a lot easier to enter, if one does not have an assembler.

♦FFD2 is not the only “routine" that doesn't move around from one version PET
to another. Actually, *FFD2 contains a pointer (or vector) to the real screen
output routine, which DOES change locations. There are at least 8 or 10 other
vectors in the same area ... all provided so there will be unchanging reference
points for the more popular routines.

In Reflection

It has taken (I can't believe it!) over six weeks to write this column!
Perhaps I really do have too many irons in the fire. Better late than never, I
suppose.

SuperPET still seems to pose the most challenges ... even if just in figuring
out how to do what we already knew how to handle on the other PET/CBM machines.
It will be interesting to see what's new (and what's old) with the Commodore 64.

More exciting times are ahead if we can just keep up with them.

The PAPER 24 Aug/Sept 1982

Graph i cs and An imat i on in BA SIC; Par t I I

by Ralph Bressler

In the -first installment in this series, we examined how to create pictures
using simple print statements. That article also illustrated how to animate
graphics or get them to move horizontally and vertically. In this part we will
see how to create a game using PRINT statements. The use o-f POKE and PEEK will
also be introduced.

Many games we have seen consist o-f moving an object around the screen to
avoid something chasing you and to capture something else. To begin the second
part o-f this article I would like to present a method o-f doing this with PRINT
statements and an X,Y coordinate system. Let's say that the upper le-ft corner o-f
the screen is 1,1 while the lower right is 38,24. In most o-f these games we use
the numeric keypad to move. Hitting 2 indicates we want to go down a line, 8 up
a line, 4 to the le-ft one space and 6 to the right. For now we will ignore the
diagonals and simply produce a routine which will keep us on the screen and
enable us to move about. What -follows is such a short program:

100 REM WALK-A-BOUT
110 :
120 PRINT"(clr)"
130 DN$="(home 24down>"
140 :
150 REM START US AT CENTER OF SCREEN
160 X=20:Y=12
17.0 PRINTLEFT*(DN*,Y)TAB(X>"*‘
180 :
190 REM START IT AT RANDOM SPOT
200 TX=ABS(RND(1)*38)+l
210 TY=ABS(RND(1)*24>+l
220 PRINTLEFT$(DN$,TY)TAB(TX>"+"
230 :
240 REM SET BEGINNING TIME
250 BT=TI
260 :
270 REM MOVE USING KEYPAD
280 GET M$
290 IF M*="2" THEN CY=1 : CX=0
300 IF M*=“4" THEN CX=-1 : CY =0
310 IF M*="6" THEN CX=1 : CY=0
320 IF M*="8" THEN CY=-1 : CX=0
330 :
340 REM CHECK TO SEE STILL ON SCREEN
350 IF Y +CY<1 OR Y+C>24 THEN 280
360 IF X+CX<1 OR X+CX>38 THEN 280
370 :
380 REM UPDATE POSITION
390 PRINTLEFT$(DN$,Y)TAB(X>" “
400 X=X+CX : Y=Y+CY
410 PRINTLEFT$(DN$,Y)TAB(X)“
420 :
430 REM CHECK IF HIT TARGET
440 IF X O T X OR Y O T Y THEN 270
450 :
460 REM IF HIT SAY SO AND PRINT TIME
470 PRINT"(home)GOT 'EM IN"ABS((TI-BT)/60)"SECONDS"

The PAPER 25 Aug/Sept 1982

This program is not very exciting since all you have to do is hit one target but
it may stimulate some ideas. We use the by now -familiar DN$ -for vertical
movement. Line 250 uses something called the jiffy clock to record the beginning
time. A jiffy is 1/60 of a second so this clock is useful for measuring short
periods of time. If we record the time at the beginning and the time at the end
we can subtract and divide by 60 to get the elapsed time in seconds. Line 280
uses a GET instead of an INPUT to take in our move. INPUT prints a flashing
cursor, allows us to enter up to 80 characters at a time and waits until we hit
return. GET does not print any cursor, will only accept one character at a time
and does not require a RETURN. GET is the better choice for our application.
Lines 290 to 320 check to see what direction we wanted to move and set the
change in X <CX> and the change in Y (CY). If we are going to go off the screen
lines 350 and 360 prevent that movement. If either our X or Y position is
different from the target, line 440 sends us back to move again. If we have hit
the target line 470 says so and prints out the time.

There are several problems inherent in the method used above and most stem
from the fact that we cannot "see" where we are going. The number of differnt
targets is limited since we would need two different variables for each to
record their position. Checking all these positions is slow. We can only move
over clear terrain since we always leave behind a space. Moving on a grid or
similar playing field would be hard. Most games that are based on this idea use
a pair of statements called POKE and PEEK.

POKE is a BASIC statement which allows a programmer to place a value into a
given memory location. PEEK allows us to "see" what is being stored in such a
location. The PET has 65,535 different memory locations which are divided among
several different functions. Some of these locations are Read-Only Memory (ROM)
which stores BASIC and the PET operating system. This is permanent memory and. we
can PEEK at it but we cannot change what is stored there. The rest of the memory
is Random-Access Memory (RAM) where the PET stores its own important information
and where we store our programs. Think of these memory locations as a large post
office with many boxes. POKE allows us to put mail in the boxes while PEEk
allows us to see what is there. The boxes are very small and, therefore, may
contain only one piece of mail or one numeric value at a time. These values may
only be from 0 to 255. Trying to place a higher or lower value in a location
wiTI result in an error. One thousand of these boxes make up the screen memory
and they are labeled from 32768 in the upper left corner to 33767 in the lower
right. When we put something in a location elsewhere in memory we may or may not
be able to see the result. However, when we change the contents of a screen
memory location we can see the change. Try typing these commands starting on the
second line of the screen:

POKE 32768,1:P0KE 32769,2:P0KE 32770,3

This should produce the first three letters of the alphabet starting in the
upper left hand corner. You see, each character that the PET can generate, all
256, has a unique code which runs from 0 to 255. We have seen that 1 is the code
for A, 2 for B and so o n . It may seem that you now have 256 more numbers to
memorize but this is not so. Clear the screen and place a "heart" (shifted A) in
the upper left hand corner. Hit RETURN and ignore any message that may be
generated. Now type: PRINT PEEK(32768). This looks at the contents of the upper
left hand corner of the screen and prints the code for what is there. In this
case you should have gotten a 65, the code for a heart. So, you need not
memorize all 256 codes or even carry around a chart, the PET will tell you any
of the codes you need to know. Practice with these commands some before reading
further. See if you can POKE your name into the lower right hand corner.

Let's try some simple programs which use POKEs and PEEKs to manipulate the
screen. The first program fills each space on the screen with the same
charac ter.

The PAPER 26 Aug/Sept 1982

> 100 REM FILL SCREEN
110 FOR 1=32768 TO 33767
120 POKE I ,160
130 NEXT
140 GET SP*: IF SP*=n" THEN140

In this program you could try changing the character code <160) in line 120.
This would fill the entire screen with some other character. You could also
change the range o-f the FOR...NEXT loop in line 110. This would control how much
and what part o-f the screen would be -filled. The second program fills each
screen position with a random character.

100 REM RANDOM FILL
110 FOR 1=32768 TO 33767
120 POKE I ,INT<RND<1)*256)
130 NEXT
140 GOTO 110

The expression after the comma in line 120 chooses a random number from 0 to
255. As we said before, this is the range of numbers which represents the entire
PET character set. This program must be stopped by hitting STOP since line 140
makes the process happen again and again. If we wanted to, we could choose both
the screen position and the character randomly. This is done in the third
program.

100 REM RANDOM FILL
110 PRINT"(clr)11
120 CH=INT(RND(1)#256)
130 SP=(INT(RND(1)*1000)+l>+32767
140 POKE SP,CH
150 GOTO120

In this version CH is the character code between 0 and 255. The screen position
to be filled is chosen in line 130. A random number bewteen 1 and 1000 is added
to 32767 to give a number between 32768 and 33767. All this may be fun and
allows us to play with the new statements but it's not very useful. The next
program puts a border around the screen in a clockwise direction. Some
interesting changes can also be made in this program.

100 REM SCREEN BORDER
110 FOR B=32768 TO 32807: POKE B,86: NEXT
120 FOR B=32807 TO 33767STEP40: POKE B,86: NEXT
130 FOR B=33767 TO 33728STEP-1: POKE B,86: NEXT
140 FOR B=33728 TO 32768STEP-40: POKE B,86: NEXT
150 GETSP$:IFSP$=""THEN150

Since we need to make four lines for the four sides of the screen, we need four
FOR...NEXT loops. The loop in line 110 places the top border. The next loop, in
line 120, takes care of the right side. Notice that the STEP here must be 40
since we are going down a line or 40 spaces at a time. The STEP in line 130
which puts the bottom on the border is -1 since it starts at the right and goes
left. Finally, when we do the left hand side we use STEP -40 since we are going
up an entire line at a time. The 86 in the POKE statements is the character code
and can be changed to anything you like. For practice you might want to try
making the border go the other- way by changing the limits and STEPs in the
loops. An even simpler change would be to rearrange the loops so that they get
done in different orders.

The PAPER 27 Aug/Sept 1982

Now we can begin to talk about using POKEs in a program. It is probably true
that POKEs should not be used when PRINT statements would be just as good. In
general, PRINTs are easier to use and will make your program easier to move from
machine to machine or -from BASIC to BASIC. We saw at the beginning o-f this
article that creating a "crash-into-the-targets" game is hard to do with PRINTs
since a large array is needed to map out what is on the screen and updating this
is slow. POKEs work well to accomplish this task after a few basic principles
are mastered. When we move we must remember that moving "down" one line is
really equivalent to moving 40 spaces or adding 40 to our current screen
position. Thus, if we are at 33200 and move down a line we are at 33240. As
before, we imagine that we are at the 5 on the numeric keypad and the other keys
move us in the directions we want to go. The chart below shews the key, the
direction we move, and how much this changes our position.

Key Direct i on Change

1 down and left + 39
2 down + 40
3 down and right +41
4 left -I
6 r ight + 1
7 up and left -41
8 up -40
9 up and right -39

The game we will construct has the "player" trying to hit a target on the
screen. Only one target appears at a time but the player must avoid hitting the
walls and an ever increasing number of mines. A target is worth 100 points but
hitting the wall subtracts 200. A mine is instantly fatal. A total time of two
minutes is allowed. A constant display of time and score is provided. All of
these rules are abitrary and all could be enhanced but this provides an easy
introduction. After we present and explain the entire program we will suggest
some changes which may make the game more interesting.

I had considered presenting various parts of the program one at a time and
giving explanations as 1 went. This approach fragments the program, so here it
is in its entirety followed by an explanation of each routine.

100 REM ***CATCH 'EM***
110 :
120 P R I N T ^ d r) "
130 REM PLACE BORDER
140 FORB=32768TO32807:POKEB, 102:NEXT
150 FORB=32807T033767STEP40:POKEB,102:NEXT
160 F0RB=33767T033728STEP-1:POKEB,102:NEXT
170 FORB=33728T032768STEP-40:POKEB, 102:NEXT
180 :
190 REM PLACE PLAYER
200 PP=<INT<RND<l)*1000>+l)+32767
210 IF PEEK(PP) 0 3 2 THEN 200
220 P0KEPP,81
280 :
290 BT=TI:REM SET BEGINNING TIME

300 :
370 REM MOVEMENT
375 IF TF=0 THEN GOSUB 3000
380 GETM$:GOSUB2000
390 IF M*="2“ THEN CH=40
400 IF Mf=H4 B THEN CH=-1

The PAPER 28 Aug/Sept 1982

410 IF MS="6" THEN CH=1
, 420 IF M*="8" THEN CH=-40
430 IF PEEK(PP+CH) = 87 THEN SC=SC+100:TF=0
440 IF PEEK<PP+CH) = 102 THEN SC=SC-200:GOTO 370
445 IF PEEK<PP+CH) > 147 THEN SC=SC-200:GOTO 370
450 IF PEEK(PP+CH) = 42 THEN 500
460 POKEPP,32:PP=PP+CH:POKEPP,81
470 GOSUBIOOO
480 GOT0370
485 :
500 REM BLOW UP
510 ET=TI:PRINT"(clr)(2down)Y0U HIT A MINE!(down)
520 PRINT "WITH" INT< < ET-BT)/60)11 SEC. LEFT (2down) ” : GOT0620
600 REM TIME UP
610 PRINT"(clr)(2down)Y0UR TIME IS UP!(2down)
620 PRINT"YOU SCORED "SC"POINTS*
625 FORI=1T010:GETSP*:NEXT
630 END
640 :
1000 REM PLACE MINES
1010 IF RND(1)>.1 THEN RETURN
1020 MP=(INT(RND(1)#1000)+1)+32767
1030 IF PEEK(MP) 0 3 2 THEN 1020
1040 POKE MP,42: RETURN
1050 :
2000 REM DISPLAY TIME AND SCORE
2010 IF(TI-BT)/60>120THEN600
2020 TM=INT((TI-BT)/60):TM*=M1D*(STR*(TM>,2)
2030 SC$=MI D$(STR$(SC),2)
2035 IFSC<OTHENSC*="-"+SC*
2040 PRINT" (home) (3r i ght)(rvs)SCORE = (o-f-f) (5sh i -f t&) (51 ef t) "SC$;
2045 PRINT"TAB(28)"TIME = "Tm*
2050 RETURN
2060 :
3000 REM PLACE TARGET
3010 TP=(1NT(RND(1)*1000)+1)+32767
3020 IF PEEK(TP)0 3 2 AND PEEK(TP)<>42 THEN 3010
3030 P0KETP,87:TF=1
3040 RETURN

In lines 120 to 170, we clear the screen and use the border routine we
developed above to de-fine our playing area. Line 200 chooses a random place to
put our player on the screen. I-f that place is not a -free space (code 32), line
210 causes a new place to be chosen. Otherwise, line 220 places the player on
the screen. Line 290 records the beginning time by "capturing" the value o-f the
ji-f-fy clock at the beginning o-f the game.

Lines 370 to 480 are the main loop o-f the program -from which di-f-ferent
routines are called. In line 375 we check to see i-f the target -flag (TF) is
zero, which would indicate no target is present. When there is no target, we go
to the routine at 3000, which -first chooses a random place -for the target. Line
3020 checks to see that this place is occupied and causes another to be picked
i-f it is. I-f it is empty, the target is placed and the target -flag is set. Back
at line 380 we GET the player's move and then access the subroutine at 2000.
This routine -first checks to see i-f the time is up by comparing the time at
present (TI) to the time when we began (BT). I-f this quantity is greater than
120 seconds, then the game is over. Otherwise, line 2020 calculates the time
elapsed and converts it to a string, which is easier to control when printing.
Lines 2040 and 2045 print the score and time on the top line o-f the screen.

The PAPER 29 Aug/Sept 1982

When we RETURN to lines 390 to 420, we check to see what move the player
entered and set CH to the proper value. Notice that CH is never set to zero so
that if no new move is entered CH will retain its old value and the player will
continue to move in the same direction. This makes the game a little harder
particularly when more mines show up. To make the player press a key for each
space he moves, you could change line 380 to:

380 GETM*:GOSUB2000:IFM*=“"THEN380

Lines 430 ^o 450 use the PEEK command to "look ahead" to see what is in the
space we wish to occupy. Since line 460 does the actual move, we don't change
position until PEEK checks out the territory. Line 430 checks to see if we will
hit a target and gives us the points we deserve and also sets the target flag to
zero. When TF=0 a new target will be placed when subroutine 3000 is called next
time. If it's not a target, lines 440 and 445 check to see if it is a wall and
punish us as necessary. The GOTO at the end of these lines prevents us from
actually entering a wall. Line 450 checks for mines and immediately sends us to
line 500 to indicate our demise if we should hit one. If everything goes OK,
line 460 blanks our old position, changes our position and then places us there.
When line 470 calls the mines routine, a mine is placed about 10’/. of the time.
Line 1010 takes care of this. The rest of the routine chooses a random space,
sees if it is free and places the mine or chooses a new position. Line 480
causes this loop to repeat.

The game ends when we hit a mine or time runs out. The lines from 500 to 630
end the game with 510 and 520 informing us of our ill fortune at being blown to
bits and the time we had remaining. Lines 600 to 620 report that time has
expired but we have not and gives us a score. Line 625 is important and should
be included in all games of this type. This line clears the keyboard buffer of
any keys we have pressed in the frenetic course of the game. Without this line,
fours and sixes would appear after the game has ended and cause problems.

I am not suggesting that this is easy or even completely understandable the
first time around. Perhaps the biggest problem is when to choose PRINT
statements and when to use POKEs. Our program could be enhanced by adding sounds
to the movements, the capturing of targets and the explosion of mines. The
sounds can be added in subroutines quite easily. First a little background on
sound. If you have a new Fat-40 or 8032 machine you may have noticed that it
chirps when it is turned on which means you have a built speaker. Those of you
with older machines will have to connect a speaker and amplifier to the CB2 line
of the user port. This is explained in many books and magazines and set ups are
available at most dealers for a modest price. Once things are connected POKEs
are used to turn on the sound and generate the notes. Here is a table of the
POKEs which are needed:

POKE 59467,16 - turns sound on
POKE 59466,81 - sets "pitch" of sound; any number can be used

but 15 and 81 sound best
POKE 59464,X - chooses individual note where X is any number

between 0 and 255

All sorts of interesting sounds can be created by experimenting with loops and
time delays and random notes. One caution: turn the sound off at the end of the
program with POKE 59467,0 or your tape deck will not operate properly. To add a
beep for each space we move in the program the following additions would be
suff i c i ent.

125 POKE 59467,16: POKE 59466,18
465 POKE 59464,0

The PAPER 30 Aug/Sept 1982

Just as the screen can be randomly filled, music or noise can be produced
randomly. Here is the rawest example o-f strictly random noise:

100 POKE 59447,16: POKE 59466,81
110 N= INT<RND<D<256)
120 POKE 59464,N
130 GET SP*: IF SP*="H THEN 110
140 POKE 59467,0

This will continue until you press a key. Each note will have the same duration
since there is no time delay. To add a random delay type in these lines:

125 T D=INT < RND <1)*10 0) +1
126 FOR 1=1 TO TD: NEXT

O-f course, variations on random noise are possible. These include controlling
the range o-f noise, modifying the random number, or setting the duration of the
effect. Here is such an example:

50000 REM VARIATION
50005 P0KE59467,16: P0KE59466,15
50010 FORL=1T030:P0KE59464,10+100*RND<1)
50030 FORI=lTO6:NEXT:NEXT:POKE59467,0:RETURN

Notice that I have used large line numbers and a RETURN at the end. This effect
could be used as a subroutine within another program. To run it as fs, just take
out the RETURN.

Through experimentation, people invent sounds that resemble certain noises or
are just handy. Here's a simple one that sounds ominous:

20000 REM OMINOUS
20010 P0KE59467,16:P0KE59466,10
20020 F0RB=1T0100:P0KE59464,255:P0KE59464,200:
200 30 NEXT:P0KE59467,0:P0KE59466,0:RETURN

Continued experimentation can produce more and more complex effects like this:

40000 REM COMPLEX
40010 P0KE59467,16:P0KE59466,85
40020 F0RL=1T010
40030 F0RL1=1T014:P0KE59464,LI*16:NEXT
40040 NEXT:P0KE59467,0:RETURN

Most of the interesting sound effects that you may have heard coming from a PET
are the result of trying out certain things. You should experiment also to see
what you come up with.

Patience and a little musical ability can even produce some respectable
songs. These, of course, are played a single note at a time. In their simplest
form these songs are just data from which notes are read and then played. With a
little practice time delays can be added to make the overall effect even better.
Here is a simple "song11:

100 P0KE59467,16:P0KE59466,15
110 READ N: IF N=-l THEN P0KE59467,0:END
120 POKE 59464,N: GOTO 110
130 DATA 100,45,210,95,100,74,25,12,250,-1

If you play this you will notice it doesn't resemble any tune you know. It

The PAPER 31 Aug/Sept 1982

shouldn't, anyway! The program below is considerably more elaborate with three
pieces o-f data -for each sound. This data includes the note, its duration and how
long to wait before the next note.

30000 REM SONG
30005 RESTORE
30010 P0KE59447,14:P0KE59444,0:P0KE59444,104
30020 READ C,T,Z
30030 T=T*20 :Z=2#20
30040 P0KE59444,C:F0RI=1T0T:NEXTI
30050 POKE59444fO:F0RI=1T0Z:NEXTI
30060 IFZ>0THEN30020
30070 P0KE59444,0:P0KE59447,0:RETURN
30080 DATA237,10,1,237,5,1,177,20,5,237,10,1
30085 DATA177,5,1,140,20,5
30090 DATA237,10,1,177,5,1,140,15,2,237,10,1
30095 DATA177,5,1,140,15,2
30100 DATA237,10,1,177,5,1,140,25,5,177,10,1
30100 DATA140,5,1,118,25,1
30110 DATA140,20,1,177,15,1,237,25,1,237,20,1
30110 DATA237,10,1,177,25,0

Notice, again, that this has been coded as a subroutine -for inclusion in another
program. C is the note, T its duration, and Z the time before the next note.

We could use several of these routines in our target program. Load or type in
the target program first. Type in OMINOUS, COMPLEX and SCNG using the line
numbers they already have. Now add this line:

515 GOSUB 30000: REM SONG

Also add GOSUB 40000 to the end of line 430. To lines 440 and 450 add
GOSUB 20000 before the GOTO 370 at the end. You may begin to see how a very
complex program can be built up a little at a time.

I realize this is an article about BASIC graphics but there are some things
that BASIC cannot do becuase it is so slow. Games which require many things to
move within a short period of time are impossible to do in BASIC. Once you have
tried the examples in these articles and have begun to write your own programs
you may want to attempt the inclusion of some machine language rotuines in your
programs. For example, I wanted to fill every blank space in a maze with dots
for a PACMAN-like game. A very short machine language routine did the trick.
Here is that simple routine as DATA in a BASIC program.

10000 F0RI=912T0942:READN:P0KEI,N:NEXT:RETURN
10010 DATA169,128,133,2,142,0,134,1,140,0,177,1,201,32
10020 DATA208,4,149,44,145,1,200,208,243,230,2,232,224,4,208,234,94

Anytime you want to fill the blank spaces on the screen with dots just give the
command SYS912. Another time I wanted to switch very quickly between two full
screen images. PRINTing and even POKing in BASIC were too slow so I programmed
SWAP-PUT, a series of short machine language routines in the last issue. You do
not have to know how to write your own machine language routines since many are
available. Several packages have even been printed in magazines to allow VERY
quick screen scrolling in almost any direction and other interesting
capabi1 i t i es.

In closing, let me say again that there is no substitute for practice and
experimentation. Don't be afraid to try things out and ask questions. Everyone
started some time and most people will be glad to help.

The PAPER 32 Aug/Sept 1982

The MONITOR

by Jerry Keys

This column will attempt to give relatively new users o-f the Machine Language
Monitor a small understanding o-f what we can do with the MLM even i-f we won't
normally get into machine language programming. The column will normally deal
with Basic 4.0 but every attempt will be made to show the equivalent Basic 2 <03
ROMs) in parentheses.

Roy Busdiecker's point on moving too -fast is well taken so I will try to
concentrate on a little less in this issue.
Let's try and take a look at identifying the end o-f basic a little more closely
this time. Along with it we'll do a little more identification of things like
the end of a basic line.

So clear your machine and type in the following:

10 REM THIS IS A TEST FOR END OF BASIC PROGRAM
20 REM ONE MORE LINE TO SHOW DIVISION OF BASIC LINES

Now type SYS54386<SYS64785)
You should see the following display on the screen:

C*
PC IRQ SR AC XR YR SP
. 5 B780 924D 34 33 38 36 FA < if not exactly same don't worry)

Now type .M 002A 002A<rtn)
This should be your display:

.: 002A 65 04 65 04 65 04 00 80

! this is the pointer to the end of the basic
program. Remember, it's lew byte first<65)
then high<04) so this location 0465.

Then type this:

.M 0400 0465 <start of basic to end of program)

In the following display of what you will see, we are going to break up the
lines for discussion purposes.

.: 0400 00 2F 04 0A 00 8F 20 54

! ! ! i !=T
! ! ! !=space in hexidecimal
! ! !=rem
! !=always a space after line number
!=number 10

=hi byte for next basic line 042f
=Low byte for next line of basic

=0400 is always 00
=Start i ng location number

So you can see from this line where the basic has started. The following lines
should look 1 ike this:

The PAPER 33 Aug/Sept 1982

0408 48 49 53 20 49 53 20 41
0410 20 54 45 53 54 20 46 4F
0418 52 20 45 4E 44 20 4F 46
0420 20 42 41 53 49 43 20 50
0428 52 4F 47 52 41 4D 00 63

!=00 always breaks basic lines.
In this case, look up above and
you will see the next location
(042F) re-ferred to.

Now, using the last byte o-f the line shown above and the -first byte o-f the
next line, we will have our pointer to the next line o-f basic.

. : 0430 04 14 00 8F 20 4F 4E 45

So the pointer is 63 04 or 0463. So look at the rest o-f the dump:

.: 0438 20 4D 4F 52 45 20 4C 49

.: 0440 4E 45 20 54 4F 20 53 48

.: 0448 4F 57 20 44 49 56 49 53

.: 0450 49 4F 4E 20 4F 46 20 42

.: 0458 41 53 49 43 20 4C 49 4E

.: 0460 45 53 00 00 00 AA AA AA

! ! ! ! !=normal code -from power up test
! ! i ! = two 00 bytes -for end o-f basic
! ! f=end of line marker
! !=S
!=E

=start of line location.

What can be determined here is that basic (in the monitor) will always start
each line with a pointer to the next line to be executed, even before the line
number. Then the line number, then always a 00 space (even if you don't want it,
try and get rid of it), next, it finally covers the text with another 00 at the
end of the line. Then, if it is the end of basic, a 00 00 is appended so to find
the end of basic, search for a 00 00 00 (the first set) and most of the time you
will have found the end of basic.

It would be worth the exercise to translate each byte from hexidecimal to
decimal to compare the basic lines with the decimal dump. You may find that you
can find those hidden goodies that are tacked onto the front of some programs by
this method. It may be slow and painstaking but chances are you need the
practice.A1so remember, if you are looking for the end of basic in a program
that you think has machine language attached, make sure that the 00 00 00 series
you find is the FIRST occurrence of it.

A small update on the last issue. You can load the machine language portion
first when attaching ML and Basic, just make sure you type new before loading
the Basic or you may get some funny happenings.

Just for fun, type SYS64790(SYS64721). Can you think of a use for that ?

The PAPER 34 Aug/Sept 1982

Re l a t i ve Fi les-; Fair t I I

by Ralph Bressler

First, let me apologize to Glenn Davidson for not saying that I extensively
editted the first part of this article which he wrote. I hope my effort made his
material more understandable and did not introduce any errors or misconceptions.
I felt that this topic needed a second part to explain some of the finer points
of relative files which make them very useful.

The word "record'* is tossed around quite a bit when we speak of files and is
sometimes used to mean different things. In a data base, a record is all the
information about a certain item or person and usually includes several fields
containing different pieces of data. The information for a mailing list would
include a person's name, street address, city, state and zip code. All of this
would be a record with each individual piece of data being considered a field.
When we begin to write a program to handle a "data base record", we run into the
term record as used by a programmer. A programmer considers a record to be, in
the case of the CBM system, a set of up to 255 contiguous bytes of storage. This
means that each "physical disk record" can contain up to 255 characters of
information. Of course, as we saw last time, the length of a physical disk
record can be set using a parameter like L50 when opening a relative file. In
any case, most programmers try to keep the physical record number on disk the
same as the data base record number. In other words, the first person in the
data base has record Ml on disk, the second #2 and so on.

The last few sentences above describe the ideal situation which is not always
possible. Sometimes a data base record may require more than 255 bytes of
information. This might be the case when we have a lot of information to include
such as a long comment. Let's suppose that we can fit the person's name and
address in the first physical disk record and the comment in a second. This
means that the first person takes up records one and two while the second person
occupies records three and four. It is relatively simple, then, to remember to
"offset" the record pointer each time we want to access the information for a
person. Suppose we have written a file in such a manner for 100 people. The
program below would access the information:

100 D0PEN#1,"PEOPLE",D0
110 INPUT"PERSON #: ";PN
120 IF PN<=0 OR PN>100 THEN PRINT"GOODBYE!*: DCLOSE: END
130 RP = 2#PN-1
140 REC0RD#1,(RP)
150 INPUTttl,NA$,AD$,CY$,SA$,2C$
160 INPUT#1,CM$
170 PRINT"(clr)PERSON #"PN: PRINT
180 PRINT"NAME : "NA*
190 PRINT"COWENT : "CM*
200 PRINT: GOTOllO

Numerous problems can arise here and this technique can be wasteful. All the
initial address information MUST fit into the first record and cannot overflow
into the next. The bigger problem is that the size of each record must be
constant. This means that you are wasting space when a short address or comment
is used and cramping your style when longer ones are needed. For this reasons
most data bases are limited to record lengths of 255 characters.

Before we go on another point should be cleared up. When PRINT# is used it
advances the record pointer in the file for each separate occurrence. Each
physical record on the disk is terminated with a carriage return, although
carriage returns may be inserted by the programmer to divide the record into
fields. If you try to write 86 characters into a record set for a length of 85,

The PAPER 35 Aug/Sept 1982

85 characters will be written and a carriage return will NOT show up at the end
o-f the record. This will also generate a "record overflow" error. In this case,
you will still be able to read the in-formation back correctly but the data will
be truncated to the record length that was set. Look at the -following partial
program:

200 REC0RD#2,12
210 PRINT#2,NA*CR*AD*CR*CY$
220 PRINT#2,CM*

The name, address and city would be printed in record 12 and would be separated
into -fields by carriage returns and a return would -follow the city name i-f the
total length is less than the record length. The comment would be printed into
record 13 since the PRINT# in line 210 advanced the record pointer once. The
comment would be terminated by a carriage return i-f it is less than 255
characters and anything printed after line 220 would be entered in record 14
unless the pointer was reset.

INPUT# works a little differently since it only advances the record pointer
when it comes to the end of a physical disk record. Carriage returns within a
record terminate a certain field but DO NOT advance the record pointer. Look at
the following part of a program:

410 REC0RD#1,15
420 INPUT#1,NA$,AD$,CY$,ZC$
430 INP(JT#1,CM*

Line 420 will attempt to read four fields of information from record 15 since
the pointer was set to that record in line 410. If all four pieces of
information are found in record 15 and the end of the record is reached then the
pointer will advance by one and CM$ will be read from record 16. If the first
two pieces of information (NA$ and AD$) are found in record 15 and the end of
the record is reached, then the pointer will advance to 16 and input will
procede from there. If all four pieces of information in line 420 are input and
the end of the record is not reached then the pointer will NOT advance and CM$
will be looked for in record 15. If these concepts seem confusing, read them
again because I feel it is important to understand these before going on to more
applications.

The fields within a record may be written and read in several different ways.
If you look back at the programs we set up last time, you will see we typically
set a record length of 85. We then used a PRINT# statement like the one below to
write our information into the file:

110 PRINT#1, MN*CR*NA*CR*AD*CR*CYCRSA*CR*ZC*

This would write the various fields of each data base record into one physical
disk record and delimit them using carriage returns. Each field could vary in
length from record to record as long as the total length (don't forget carriage
returns) did not exceed 85. By the way, on the very first page of the first part
of this article I made an error regarding record length. I added the lengths of
the fields we required, got a total of 82 and decided a record length of 85
would be sufficient. In fact, if you used up the full 82 characters AND the
carriage returns between each field, the length would be 8? and an overflow
error would result. This would only be obvious with records that used the full
82 characters. In any case, be sure to count the returns since the system does!
To get the information back we just depended on the fact that a carriage return
terminates an INPUT so that the following line does the job:

310 INPUT#1, MN*,NA*,AD*,CY*,SA*,ZC*

The PAPER 36 Aug/Sept 1982

. There are other ways to do this which may, in some applications, be
bene-ficial. We may want each -field to be a -fixed length no matter what the
length o-f the actual data. For example, the name -field should always be 20
characters even i-f the name is only nine. The additional characters are -filled
in by spaces. Borrowing a program -for writing a simple mailing list -from last
time, we might change it to look like this:

10 SP*="<25 spaces)"
15 DOPEN #1,"MAILING LIST",D1,L85
20 CR* = CHR*<13)
30 INPUT "NAME";NA*
40 IF NA$="END" THEN CLOSE 1: END
45 NA* = LEFT*<NA*+SP*,20>
50 INPUT "STREET ADDRESS";AD*
55 AD* = LEFT*<AD*+SP*,25
60 INPUT MCITY";CY*
65 CY* = LEFT*< CY*+SP*,20)
70 INPUT "STATE";SA*
75 IF LEN<SA*> 0 2 THEN 70
80 INPUT "ZIP CODE";ZC*
85 IF LEN<ZC*M>5 THEN 80
90 RN = RN+1: MN*=STR*<RN)
45 MN* = LEFT*<MN*+SP*,5>
100 REC0RD#1, <RN)
110 PRINT#1, MN*CR*NA*CR*AD*CR*CY*CR*SA*CR*ZC*
120 GOTO 30

Now each -field has a -fixed length but can still be accessed as we did be-fore
using the INPUT# statement.

From the way we set up our -file above we know that each -field will not only
have a -fixed length but will start at a specific byte in each record in the
■file. The chart below shows this layout:

Bytes Mar i able Length
1 - 5 MN* 5
7 -26 NA* 20
27-51 AD* 25
53-72 CY* 20
74-75 SA* 2
77-81 ZC* 5

Note that one byte is "skipped" between each -field since a carriage return is
used to separate the -fields. Now all this would be quite futile if we had no way
to set the record pointer to a specific byte. The CBM relative file system
allows us to not only set the pointer to a record but to a specific byte within
that record. We may then read from or write to that byte. In this case, let's
assume we only want to read zip codes, so we want to read starting at byte 77.
The following program reads and prints the zip codes from the file we created
above:

10 DOPEN #1,"MAILING LIST",D1
20 RP=RP+1
30 RECORD#l,<RP),77
40 INPUT#1,ZC*
50 IF LEN<ZC*) 0 5 THEN DCL0SE: END
60 PRINT ZC*: GOTO 20

The PAPER 37 Aug/Sept 1982

Notice how the second parameter in the RECORD statement in line 30 sets the
"byte pointer". I-f this number were not constant, it too would have to be in
parentheses. Now that I have presented this, I must say that it offers only a
fraction of a second's advantage over reading all the fields of the record using
INPUTS. It also adds an extra complication which may not be necessary.

]f reading from a specific byte offers questionable advantage, writing to a
specific byte may offer less. It might seem at first glance that writing to a
record starting at a specific byte would offer something since you would avoid
writing the entire record. This is not true! Writing to byte 20 in a record
DESTROYS everything after what you write. In our example, trying to just change
a person's street address would wipe out their city, state and zip code! The
only choice then is to read all the fields of a record, change the one you are
interested in and then write them all back. It seems to me that you may as well
forget reading and writing using this byte method since they offer little
advantage and introduce some complexity. Many books, including the Commodore
manual, emphasize this and I wish someone would suggest an application where it
is a real advantage.

I would now like to turm my attention to a "real" problem with the mailing
list or data base program. We will probably want to keep our mailing list in
some order like alphabetically by last name or in zip code order. To do this we
do not want to have to enter the names in that specific order nor do we want to
type in the same list twice in different orders. What we want to do is enter the
list once and be able to print it out in either order. Every time we enter a
name then we must find its position in the list, insert it in the correct place
and push all the other data down. This takes longer and longer as the list
grows, does not allow for different orders and makes deletion difficult.

The solution to this problem is to create a "key file" with numbers that tell
the order of the records in the main "data file". When data is added to the main
file it is simply appended to the end. Only the numbers in the "key file" are
shifted making the operation faster and allowing for several different "orders".
A key file might look like this:

1 3 6 2 4 5

What this says is: when outputing the data, print record one first, record three
second, record six third and so on. When we add record seven, we search through
the main data file and find that record seven should be printed third. Our key
file then looks like this:

1 3 7 6 2 4 5

The "simple" program presented below allows adding of the data in this
manner. First, we search the main data file to find where the new data belongs.
We begin our search with the first record in our key file and keep searching
until we find the correct position. We then "open up" a space in the key file by
pusing down all the other numbers. Finally we write the current record number
into the key file and append the new data to the main data file.

Deleting a name from the main data file can be done quite easily. The
simplest way is to search for the name to be deleted and change its key number
to a zero. Now, whenever we print names we ignore any records with zero keys. As
we add and delete more and more records we begin to waste a lot of space since
we never truly delete the record. The best method is to reuse the space once
reserved for the records we no longer want. This is fairly easy to do but
difficult to explain. The program below uses the most straightforward, easiest
to explain approach. However, it may be the most ambitious attempt I have ever
made in explaining a programming technique. It is unlikely I can answer all your
questions so feel free to drop me a note if anything is unclear.

The PAPER 38 Aug/Sept 1982

100 DOPEN#1 TEACH LIST",D0,L50
105 D0PEN#2,"TEACH KEY“,D0,L5
110 CR$=CHR$(13)
115 PRINT"(clr)MAILING LIST(down)"
120 INPUT"<rvs)S<off)TART A NEW FILE OR (rvs)O(off)PEN AN OLD ONE";SP$
125 IF SP*="S” THEN 175
130 INPUT#2,MK
135 REM MK IS MAXIMUM KEY NUMBERS
140 F0RI=2T0MK+1:REC0RD#2,<I)
150 INPUT#2,T:IFTOOTHENAK=AK+1
160 NEXT
165 REM AK IS ACTUAL KEY NUMBERS
170 :
175 REM MAIN MENU
180 PRINT"<clr)OPTI0NS": PRINT
190 PR1NT"ADD
200 PRINT"DELETE
210 PRINT’PRINT
220 PRINT"QUIT
230 GET OP*:IFOP*=""THEN230
240 IFOP*="Q"THENRECORD#2,l:PRINT#2,MK:DCL0SE:END
250 1FOP*="A"THENGOSUB1000
260 IFOP$="D"THENGOSUB6000
270 1FOP*="P"THENGOSUB2000
280 GOTOI8O
290 :
1000 REM ADD NAMES
1010 PRINT"<c1r)"
1020 MK=MK+1:AK=AK+1
1030 PRINT"(down)(rvs)ADDING #<off)"AK
1040 INPUT"NAME :";NA$
1050 IFNA$="END"THEN1120
1060 INPUT"ADDRESS
1070 INPUT"CITY
1080 INPUT"STATE
1090 INPUT"2IP CODE

;AD*
" ;CY*
;SA*
jZC$

1100 RECORD#l , (MK) :PRINT#1 ,NASCR*AD*CR*CY*CR*SA*CR$ZC*
1110 PRINTsGOSUBSOOOsGOTOl020
1120 MK=MK-1:AK=AK-1:RETURN
1130 :
2000 REM PRINT
2010 PRINT"(clr)":IFMK=OTHENPR1NT"NO NAMES":G0T02130
2020 FORI=lTOMK
2030 REC0RD#2,(I+1):INPUT#2>KN
2040 IFKN=0THEN2140
2050 RECORD#l,(KN)
2060 INPUT#1,NAS,AD*,CY*,SA*,ZCS
2070 PR1NT"NAME :"NA*
2080 PRINT"ADDRESS :"AD*
2090 PRINT"CITY :"CY$
2100 PRINT"STATE :"SA*
2110 PR1NT"ZIP CODE :“ZCf
2120 GETSP$:IFSP$=""THEN2120
2130 PRINT
2140 NEXT
2150 RETURN
2160 :

The PAPER 39 Aug/Sept 1982

3000 REM SEARCH POSITION
3010 REC0RD#2,2
3020 IF MK=1 THEN PRINT#2,1:RETURN
3030 KD$=NA$
3040 F0RI=1T0MK-1
3050 REC0RD#2,(I+1)
3060 INPUT#2,KF
3070 RECORD#!,(KF)
3080 INPUT#1,NA$,AD*,CY*,SAS,ZC*
3090 KF*=NA$
3100 IF KF*<KD* THEN 3120
3110 KP=I:60SUB5000:RETURN
3120 NEXT:REC0RD#2,(MK+1):PRINT#2,(MK):RETURN
3140
5000 REM INSERTION MOVE
5010 NK=MK
5020 REC0RD#2,(NK-1+1):INPUT#2,OK :PRINT#2,OK
5030 NK=NK-1
5040 IF NK>KP THEN 5020
5050 REC0RD#2 , (NK+1):PRINT#2,MK
5060 RETURN
5070 ■a

6000 REM DELETE NAMES
6010 INPUT"(clr)NAME TO DELETE";ND$
6020 F0RI=2T0MK
6030 REC0RD#2 , (I):INPUT#2 , KF
6040 IFKF=0THEN6080
6050 REC0RD#1 , (KF)
6060 INPUT#1,NA*,AD*,CY$,SA*,ZC$
6070 IFNA*=ND*THEN6120
6080 NEXT I
6090 PRINT"(down)THAT NAME WAS NOT FOUND!"
6100 GETSPS:IFSP*=""THEN6100
6110 RETURN
6120 REC0RD#1,(KF):PRINT#1,-**DELETED*»"
6130 REC0RD#2,(I>:PRINT#2,0
6140 AK=AK-1:RETURN

I n lines 100 and 105 we OPEN the main data file and the key file as relat i ve
f i 1 es with the appropriate lengths. Remember that relative files are always open
to both read and write. In writing -files the carraige return is used so often
that we give it its own variables (CR$) in line 110. Trying to INPUT -from a -file
which has just been created will give us a "?FILE DATA ERROR" since no data has
been recorded in the -file. To avoid this we ask whether this is a new file or an
old file in line 120. If it is new, then we skip the next section which deals
with files which have already been created.

In line 130 we get the maximum number of keys from the key file. This number
includes all active keys and those that have been set to zero because of a
deletion. In lines 140 to 160, we determine the actual number of active keys,
which is also equal to the number of people in our main data file. Notice that
we search our key file beginning at the second record and it is important you
understand the reason. Remember that the first entry in the key file is NOT a
key but the number of keys present.

The main part of our program is contained in lines 175 to 280 and this part
calls various subroutines based on the menu choice we make. When we choose Q for
quit, the program writes the maximum number of keys (MK) to the first record in
the key file and then closes all disk files which are open. Let me try to
explain the other three menu choices as separate entities.

The PAPER 40 Aug/Sept 1982

The "add" subroutine starts at line 1000 and calls a "search position"
routine which then calls a "insertion" routine. The add routine itself simply
increments the maximum and actual number o-f keys and tells us the number o-f the
name we are actually adding by printing the value o-f the actual keys (AK). I-f we
enter l*WD -for the name then both MK and AK are decremented in line 1120 and we
RETUIW to the menu. When we actually type in a new name and other in-formation
the record pointer is set to the next position in the main data -file by line
1100 and the in-formation is written to the -file by the same line. As explained
be-fore, the data in the main -file is in the order it is entered. Now we must
insert the main -file position o-f this record in the key -file so that when it is
printed later it will be in the right order. Line 1110 calls the “search"
routine which determines the correct position o-f this record in the key -file.

First we set the pointer to the second record in the key -file since this is
where the keys actually begin. Line 3020 avoids a search i-f this is the -first
record we are entering. In this case, a 1 gets written into the -file and we
immediately RETUFfl^. For all other records we must search and line 3030 sets the
search string equal to the name we just entered since we want the -file to be
kept in alphabetical order by name. Next we search the -file beginning with the
-first key and ending at one less than the maximum number o-f keys. This is done
to avoid comparing the data we just entered to itself. In lines 3050 and 3060,
we set the record pointer to the correct position in the key file (Remember the
first record in this file is NOT a key!) and then input a key. New, we may be
inputing the third key from the file but it may be the number 8. This means that
in alphabetical order the data which occupies record eight in the main data file
will be printed third. Lines 3070 and 3080 set the data pointer to the correct
position in the main file and input the data found in that record. Next we set
the key field <KF$) to the name and check to see that this name is less than the
name we entered as data. If it is, we go to the NEXT statement in line 3120 and
go through the process again. If, on the other hand, the name we entered is
equal to or greater than the one just read from the file, we set the "key
position" (KP) to the position we are at and go to the "insertion" subroutine.
I'll explain that in just a minute! If we get to the end of the FOR-NEXT loop
and, thus, the end of the key file without finding a position for our record, it
must mean our information should go at the end of the key file. In line 3120, we
set the record pointer and write our key number to the file and RETURN to the
add routine.

If we must add our key number to the key file in the middle instead of at the
end, we have a slight problem. We must move all the numbers after the point of
insertion down one to accomodate the new number. To do this we must start at the
END of the file and move everything or else we will lose are data as it is
overwritten in the file. So, we start by setting a new variable <NK> equal to
our maximum key <MK). We do this to preserve the value of MK for later use. In
line 5020 we set the pointer in the key file, input a key number, and then print
it back to the file. Remember that after the number is INPUT the record pointer
increments and we write the number to the NEXT record. In lines 5030 and 5040,
we decrement NK and then check to see if we have moved everything up to the
position where we want to insert our new key. If we aren't there yet, we do it
again. Otherwise, we set the pointer and print the data into the file in line
5050 after which we RETURN to the "search" routine and then back to the original
"add" routine.

Now let's try to delete a name using the D choice on the menu. Deleting is
actually easier than adding since we chose a simplistic method as explained
before. When we find the record we wish to delete, we will write a 0 to its
position in the key file and replace its record in the main file with the word
DELETED. The subroutine at 6000 first asks us for the name we want to delete. We
start searching the key file using the FOR-NEXT loop. After setting the record
pointer in the key file we input a key and check to see if it is 0. If the key
is 0, that record has already been deleted and we skip to the next key. A

The PAPER 41 Aug/Sept 1982

non-zero key causes us to set the record pointer in the main -file to the record
indicated by the key. We input the record and check to see i-f the name we want
to delete (ND$) is equal to the name we just read -from the -file (NA$). I-f it is
not, we go on to the next key and next name. I-f we get through the entire key
■file without -finding our name, then line 6090 tells us the name does not exist
and we RETURN to the menu by pressing any key. I-f we do -find the name we want,
the program branches to line 6120, sets the pointer to the proper place in the
main -file and writes " ##DELETED*»" . The pointer in the key -file is set and a 0
is written a-fter which the actual number of keys (and names) is decremented and
we RETURN.

The option to print the information from the files is the easiest to explain.
In line 2010 we check to see if there have been any names added yet and print an
error message and RETURN if none exist. If there are names present, a FOR-NEXT
loop is used to run through the key file starting at the second record in this
file which is the first key. Line 2030 gets the key number and line 2040 checks
to see if it is a 0 indicating a deleted record. If the record has been deleted,
we immediately go to the next one. If the record exists, the pointer in the main
file is set and the data INPUT and printed. This continues until the key file
ends.

Many improvements on this program and its methods are possible. I feel it
contains just the bare minimums, which were fairly easy to explain. More than
this would have been too complex and I wonder if all the information presented
here was clear. To change this program for zip code order or any other for that
matter, change the NA$ in lines 3030, 3090, and 6070 to the variable name for
whatever fields you want. The wording in line 6010 should also be changed.
Further changes would include reusing the space of deleted records and allowing
multiple key files. Both of these are included in other programs I've written
which are too long and complex to describe here.

Two R ET Buqs

by Ev Bowyer

Before BASIC 4.0 the only way to write random access disk files was by
allocating and writing blocks of data using direct commands. You have to keep
track of where each block is located in your BASIC program. This method allows
you to use both disks as one large data base. The PET keeps track of the blocks
(sectors) used in a table which is art of the directory called BAM. The BAM is
read into the disk drive's memory when you initialize the drive. The problem
occurred when I end my program. I CLOSEd the random access channel to the disk,
but the PET DOS only wrote the BAM of the last disk I accessed back on the
diskette. Therefore I lost all the blocks (sectors) I allocated on the other
drive. I called Commodore Tech Support, but they don't consider this a problem,
so it still works the same in BASIC 4.0. The solution is to issue an OPEN, GET
and CLOSE to both drives before ending the program.

I use overlay structure in my business programs. I found that I was losing
data from some of my arrays when I went from one overlay to another. The data I
was losing was always a default value I plugged in from one of the earlier
overlays. The data was a character string. I thought that when you created a
character string in a program using something like A$="0.00'', the data was
placed in the string storage area in high memory. This is NOT true. The data is
left in your program area and is pointed to by the variable or the array tables.
This is also true for data statements. This means that the next overlay in my
program destroyed the data in my arrays. The way around this problem is to code
character data as a concatenated string like A$=,,0U + " .00*. This will force the
string to be placed in high memory.

The PAPER 42 Aug/Sept 1982

Au t o Qpera.tino Cost Study

by Hugh Greenup

In one o-f Galbraith's vintage years he says you must disregard published
statistics this way: the more summative a number the more the likelihood it's
wrong. Ten years ago when I began my own study o-f auto operating cost you could
hardly get useful comments about gasoline mileage; it seems nobody really knew
how many miles per gallon they were experiencing. The Feds were just about ready
to begin their nonsense publication of how many miles a gallon you would never
get out of brand X. Then as now, Hertz and also American Automobile Association
were regularly releasing colored annual vehicle operating expense numbers and
the IRS had an allowable amount per mile you could deduct IF. What's happened
since 1972 is that a few hundred thousand computers got into the hands of you,
me, and other citizens and we can collect our own data. We can arrange our own
summative statistics and draw our own conclusions all for ourselves.

First we've got the problem of collecting the numbers and believing them. A
little bound book in the glove compartment and a pen can solve this one. At a
year's end you know how many gallons, average price, and how many miles you
went. This is a pretty important part but it is just the beginning. Immediately
you reach this question: What do you mean annual operating expense? My choice
is: Segregate vehicle costs into two parts. Name the first part Fixed and
include all costs attributable to vehicle ownership but seemingly independent of
whether or not the thing gets driven or not. That other part is per mile costs,
those that increment if you drive. If in doubt about a cost, is it really a
vehicle cost, ask the question; What if I was trapped in Manhattan, had no car,
and took taxis or roller skates everywhere?

There are two components in vehicle operating costs that throw your average
economist off his or her feed: depreciation and inflation. You and I haven't
this digestive trouble at all; depreciation and inflation are very real costs
out of our pockets and we must figure them into our vehicle operation costing.
They're fixed costs. Depreciation is a sinking fund, so to speak a savings
account preparing for a new vehicle to be bought at a future time. Inflation, as
all of us know from recent dreadful experiences, requires a savings account too,
since the future new vehicle is doubtless going to cost a LOT more than the one
that will be replaced. Economists do recognize opportunity cost even though AAA
ignores it and Hertz often treats it wrong: If you were taxi bound, owned no
vehicle, you might put the same money on deposit and earn interest with it; by
buying a vehicle you lost the opportunity to earn a profit on the money tied up
in the vehicle. Opportunity is a fixed cost. Some of the other costs you have to
include are ignored by Hertz and AAA, no doubt so they can get lower answers. In
LA we have a good police force and you DO NOT bribe your way out of a traffic
ticket; if you didn't drive you oughtn't ever to have this cost.

Some decisions you have to make,such as whether to put a specific cost item
in the figures or not, seem to have no good answer. Whereas I am familiar with
the customary statements about valuation of one's own personal time, as when
repairing one's own vehicle, or doing bookkeeping so as to find out how much the
thing really costs to run,or washing it by hand, etc. I have never felt
satisfied including X dollars per hour. Still, I worry when I omit evaluating
and including my own time. I leave my own time's value out of these computations
but don't feel quite right about that. A main point here is, you do the deciding
yourself about each of those matters. You do not accept the "expert's11 advice
since the expert may really be trying to coerce you into leasing a car or buying
stock in some taxi venture or not noticing how much vehicle ownership really
costs. To get a useful answer you have to do it yourself and that includes
dec i d i ng what to do .

So here's what I do. I'm most interested in how much "one more" mile would
cost; i.e., should I drive or fly to Reno? That's the marginal mile my program

The PAPER 43 Aug/Sept 1982

prints out below. As I did this run this year I noticed it was the tenth year. I
counted six different computer versions of my program which had been run on 4
micros and 6 maxies. My CBM 8032's easiest and best by far. None of the programs
I used come from somewhere else; none are structured or top-down or for
publication, and they're not for the teaching of programming. I document
internally as much as I can and write code to fill up the screen and use little
paper. I generally don't care how long it takes to run but 1 care a lot how long
it takes to yield answers I believe. All my programs keep their data within and
are constantly changed. This program came to life long before I could buy
Command-0 so you'll see the half-hearted columnar formatting code segments;
since it only runs once a year I didn't feel like putting in the time to replace
them with the excellent PRINT USING statement Bob Skyles neat chip permits.

What it gives for the 1982 answer looking backwards at 1981 is 22 1/2 cents
per marginal mile. Data it uses each contribute unit cost and miles to consume
one unit. Lastly it prints out a reminder for each vehicle cost we recognize but
exclude from the marginal mile. So's not to leave any reader in suspense, if
every cost were included in a total expense per mile for three years (then buy a
new one) it'd come to something like $1.40 per mile omitting my own time's
value. Sound high? It's right! Just try the same sort of unbiased cost analysis
on your friendly local home microcomputer's costs, using say, words of output
that get used for something, and you'll get $4 a word or whatever.

A considerable portion of my vehicle operating cost is deductible since it is
used for business purposes. I do not use any average cost per mile for the
deduction; instead I itemize. One copy of the program's output goes to the CPA's
file just for the heck of it. Maybe it proves I'm intrepid or something. Here's
another copy below, for you, along with the program "that done it."
MARGMILEI/18/82

* MILES $/MI X
GASOLINE UNLEADED 1/17/82 1 .289 9,6 .1342 60
REPAIR CONTRACT 420 20000 .0210 9.3
PARKING 100 6500 .0153 6.8
BRAKE JOB 250 25000 .0100 4.4
4 TIRES 255.4 30000 .0085 3.8
INSURANCE DEDUCTIBLE 250 30000 .0083 3.7
WASHES 40 6500 .0061 2.7
TUNE AND LUBE 75 12000 .0062 2.7
BATTERY 63.6 20000 .0031 1 .4
PARTS 50 15000 .0033 1 .4
REPAIR CONTRACT DEDUCTIBLE 50 20000 .0025 1.1
BELTS,BLADES,AIRFILT&FLUIDS 30 i 5000 .0020 .8
CITATION 80 50000 .0015 .7
5 QTS OIL & FILTER 9 7500 .0011 .5

MARGINAL MILE COST = .2237 99.3

EXCLUDED FROM THE MARGINAL MILE

DEPRECIATION (AGAINST HISTORIC COST) = SINKING FUND IN CONSTANT $
PERSONAL LABOR OF ALL SORTS: REPAIR, ACCOUNTING ,WASH; ETC.
SINKING FUND AGAINST INFLATION
BI, PD, COMP & COLL INSURANCE
AUTO CLUB
OPPORTUNITY COST
VEHICLE LICENSE
SHOP TOOLS

The PAPER 44 Aug/Sept 1982

100 PRINT"< clr)":P0KE59468,12
110 GOSUB590:60SUB640:PRINT#5,SF$
120 L*=" $ MILES $/MI. V." :PRINT#5,L$
130 READ ITEMS:IF ITEM$="3030"THENRESTORE:GOTOl50
140 READ PRICE,MILES:MARGCPM=MARGCPM+<PRICE/MILES):GOT0130
150 READ ITEMS*:IF 1TEM*=“3030“ THEN 300
140 READ PRICE,MILES:L*=ITEM$
170 X*=STR$<PRICE) :L=LEN<X$)-1 :XS=RIGHT*<X*,L) :F0RJ=1T06-L
180 L$=L$+" " :NEXTJ:L$=L$+XS
190 X$=STR$<MILES):L=LEN<X*)-1:X*=RIGHTS<X$,L):F0RJ=1T06-L
200 L$=L$+" “ :NEXTJ:L$=L$+X$
210 CPM=1000*(PR1 C'E/MI LES) :X$=STR$(INT(CPM*10000)) :ALL=ALL+CPM
220 L=LEN<X$)-1:IFL>70RL<4THENPRINT“ERR0R * :GOSUB220
230 1FL=7THENL$=Lf+" ."+MID*<X*,2,4>
240 IFL=6THENL$=L$+“ .0"+MID*<X*,2,3)
250 IFL=5THENL*=L*+" .0O"+MID*<X*,2,2>
260 IFL=4THENL$=L$+ * .000‘*+MID*<X*, 2,1 >
270 PCTCST=INT(CPM/MARGCPM)/10:IFPCTCST<10THENL*=L$+" "
280 IFPCTCST <1THENL$=L$+“ "
290 L*=L*+STR*<PCTCST):TLPCT=TLPCT+PCTCST:PRINT#5,L*:G0T0150
300 LS=" ----------- " :PRINT#5,L*
310 L*="MARGINAL MILE COST =
320 X*=STR*<INT<10*ALL)/10000):L$=L*+X*
330 X$=STRS<INT<10*TLPCT)/10):L*=L$+X*:PRINT#5,L*
340 DATA"GASOLINE UNLEADED 1/17/82 ",1.289 ,9.6
350 DATA"REPAIR CONTRACT ,420
360 DATA"PARKING " ,100 ,6500
370 DATABBRAKE JOB " ,250 ,25000
380 DATA"4 TIRES ",255.40 ,30000
390 DATA"INSURANCE DEDUCTIBLE " ,250 ,30000
400 DATA"WASHES ",0040 ,06500
410 DATA“TUNE AND LUBE ",75 ,12000
420 DATA“BATTERY ■,63.60 ,20000
430 DATA"PARTS 8 ,50 ,15000
440 DATA"REPAIR CONTRACT DEDUCTIBLE ■ ,050 ,20000
450 DATA"BELTS,BLADES,AIRFILT&FLUIDS ", 30 ,15000
460 DATA"CITATION ■ ,80 ,50000
470 DATA"5 QTS OIL & FILTER “ ,9.0 ,7500
480 DATA"3030"
490 PRINT#5:PRINT#5,“EXCLUDED FROM THE MARGINAL MILE*:PRINT#5
500 READ EX$:IFEXS>"3030"THENPRINT#5,EX*:GOTOSO0
510 PRINT#5:CLOSES:END
520 DATA"DEPRECIATION (AGAINST HISTORIC COST) = SINKING FUND IN CONSTANT $"
530 DATA"PERSONAL LABOR OF ALL SORTS: REPAIR, ACCOUNTING ,WASH; ETC."
540 DATA"SINKING FUND AGAINST INFLATION","BI, PD, COMP & COLL INSURANCE"
550 DATA"AUTO CLUB" ,“OPPORTUNITY COST","VEHICLE LICENSE"
560 DATA"SHOP TOOLS",“3030"
570 GETAS:I FA$='' "THEN570
580 RETURN
590 RR=3: INPUT"DEVICE 3 (41 e-f t >" ;AS: IFA*="4"THENRR=4
600 CLOSES:OPENS,R R :RETURN
610 CLOSES:OPENS,4:60SUB640:CMD5,SF$:LIST:PRINT#5:CLOSES:RETURN
620 GOSUB640:GOSUB630:DSAVE<" '" + SF*> ,D<DR) :VERIFYSF$,8:PRINTDS*n 11 SF$:RETURN
630 INPUT"DRIVE 0 (4le-ft)";DR:RETURN
640 SF$="MARGMILEI/18/82":RETURN

The PAPER 45 Aug/Sept 1982

IHE_EPSON_AND_I

A Happy Saga.
by Jim Fowler

In issue #3 there were a number o-f questions raised (and

partly answered) about the use of EPSON printers with COMMODORE
equipment. I’ve lived through the same experience as A. H. McCann

("Beware the Epson Jabberwock"), but my outcome seems to have been a

bit happier. At least I continue to use my IEEE interface without any

problems. However, I have had to modi-fy some of my programs.

There are two kinds of incompatabi1ity between EPSON and
COMMODORE. First, COMMODORE does not use true ASCII to send characters

out on the IEEE data bus. Well, I bought COMMODORE equipment in the

first place because it seemed to have the better operating system with

BASIC resident, and because it had a larger "vocabulary" of graphics.

The outside world has a smaller vocabulary and includes a lot of stuff

not used much (at least by micros) like signals for shift-in,

shift—out, start-of—heading, synchronous—idle, and a dozen others. So
you just have to write a little translator in those programs that send

text to the printer. Second, there is no agreement about whether a

carriage return (CR) also means a line feed (LF). The printer uses a

motor to advance the paper which is not the one that moves the

printhead. To turn on that motor for a specific length of time takes a

different signal than the one that moves the printhead to the left end
of the line. Here's a real problem because one of the neat features of

an EPSON printer (and I don't mean the CBM modified EPSON MX—70) is
that it is bi-directional. That saves time and speeds the work, but it

also means that a CR signal must not be executed without first

considering whether the printer ought to print material on the way back

to the left margin. This problem is not peculiar to COMMODORE-EPSON

combinations.

Well, enough of that. What to do? Here's what I did: I have an
EPSON MX—80 (I couldn't get the F/T model at the time and now I'm glad

I saved the money and spent it on GRAFTRAX—80). I use WORDPRO 4, and a

number of other programs which must interface with the printer.

WORDPRO 4 gives you an option of printers: CBM, ASCII, or SPINWRITER.

If you set it to ASCII there is no problem about upper and lower case.

Otherwise, if the printer takes output from the 8032 which is al.l._lower

case, it will print neatly in capital letters. This is fine for
listings (unless you have a capital letter in quotes). Capital letters
in the output turn into TRS—80 graphics. (If you want to print PET

graphics you'll have to make other changes, but that's another story.)

If you want upper and lower case to agree between the screen and the

printer you must make a translation somewhere. If the output comes

through the program that is no big deal. The following BASIC routine

does it rapidly and you can attach it as a subroutine to any program:

Assume X is the ASC value of the character to be translated:
IF (X > 192) AND (X < 219) THEN X = X AND 127

IF (X > 64) AND (X < 91) THEN X = X AND 223: X = X OR 32
Now CHR$(X) can be sent to the printer. Or you can concatenate a line
and send it to the printer as one long string (which saves time - the

printer works as you gather together the next line).

The CR/LF problem must be solved in the printer hardware.

Here are the switch settings that work with my EPSON MX—80 and CBM 8032

with the IEEE bus interface:

Switch #1: 1, 2 ON; 3, 4 OFF.

Switch #2: 1 unused; 2, 3 OFF (fixes LF when in last

col or when CR received from computer);

4, 5 OFF; 6 ON; 7 OFF; 8 ON (maybe 7,8

have no effect with interface).

Interface switches: Sw #1: 3 ON, rest OFF (= device 4)
Sw #2: ”JPET1" ON, rest OFF (agrees with

above on CR/LF settings).

If you add the GRAFTRAX-80 chip the interface settings remain

the same but the others should become:
Switch #1: 1 OFF (80 cols); 2, 3 ON (fixes CR/LF);

4, 5 OFF; 6, 7, 8 ON

Switch #2: 1, 2 unused; 3 ON, 4 OFF.

The instructions with the chip explain most of these.

I recommend you add the GRAFTRAX-80 chip to get your money's

worth from the MX-80. If Ralph will permit this text to be printed in
THE PAPER without being retyped you can see the cute things one can do:

Y o u c a n e x p a n d t o Si 1 e t t e r - s / i n c h -

You can print at 10 per inch in ITALICS which looks pretty cool or
return in the middle of a line to normal. You can get emphasis in

headings or topic sentences by going to 8 per inch:
Which leaves more space between letters — OK for headings.
I have set all of this in Emphasized mode so the it will be dark enough

to make good offset plates but you can get it even darker:

LIKE THIS: it's called the WALLBANGER node because each dot is done 4
times in a small square overlapping its neighbors.
Then th e r e i s th e condensed tode which g ives 16 .5 to th e inch.

I t i s good fo r l i s t i n g - you have h a lf the page fo r notes!

Besides all the type faces (and these are only some of them)

you can print any combination of up to 8x8 microdots in a column. You
can also move the paper by as little as 1/216th inch, less than a

dot-width. Thus you have a slow but precise plotter! Now, to make a

picture of Snoopy ...

SYSRES

Type: So-ftware by Ralph Bressler
Model PET: Any PET w/ BASIC 2.0 or greater and at least 16K o-f RAM

Any PET/CBM disk drive
Printer recommended

Source: Solidus International
#204, 4202 Guide Meridian
Bel 1ingham, WA 98226

Price: *95

The ad -for this programming aid makes some big promises and 1 wanted to see
how close the real thing came to the claims which were made. This review
supposes that you are interested in a programming aid and that you know a little
about some o-f the commands available. I have been using SYSRES now -for about two
weeks in developing educational so-ftware that I sell. I cannot possibly explain
in any detail all o-f the commands and options available. However, i-f what I say
sounds interesting you might want to try SYSRES. Solidus o-f-fers a 30-day, money
back guarantee so you have nothing to lose. Don't order it, though, unless you
can a-f-ford to buy it because I think once you use it you won't be able to let it

SYSRES comes as a single master diskette in a nicely done, padded binder
which also includes a well-written manual. More about the manual later. The
master disk will create three working copies o-f SYSRES but no more and the
working disks cannot be copied. I once said that 1 would never buy a protected
program but that was be-fore the new sophisticated methods o-f protection came
about. I-f you somehow manage to garble all three disks, Solidus promises to
replace them -for -free. They have also promised to o-f-fer any upgrades or new
versions o-f SYSRES to registered users -for a reasonable -fee. Keep in mind that
the master will produce copies -for any PET/CBM model and this is a big plus.
When you load SYSRES you may choose to put it at the top o-f 16 or 32K o-f RAM, in
8K o-f RAM starting at $9000 or split it between the top o-f memory and 4K o-f RAM
at *9000.

The clearly written manual contains some 86 pages o-f detailed explanation o-f
each command and many examples o-f use-ful ways to use them. There were a -few
points which I did not understand but this did not seem to e-f-fect my ability to
use SYSRES e-f-fee t i vel y . The commands are presented in alphabetical order so
•finding things is easy. A detailed table o-f contents is present and quick
re-ference charts are provided.

SYSRES is meant to aid programmers not program users. None o-f the SYSRES
commands are to be included in the -final version o-f a program. In -fact, SYSRES
automatically disconnects itself when a program runs. SYSRES provides
auto-repeat on ALL keys and has a smooth scrolling -feature which can move
through a program in either direction. A screen dump is available at any time.

SYSRES has all the old -familiar "wedge" commands but enhances them greatly.
All the wedge commands now operate directly on the directory. This means that
a-fter listing the directory a / in -front o-f a program name will load it while an
up arrow will load and run the -file. To scratch a -file you just type 3S1 : be-fore
the name in the directory and that -file is scratched -from drive 1. Typing 3C0:
in -front of a name will copy that file from drive 1 to drive 0. Of course, these
commands can be used in the more standard way also. By typing 3L in front of a
name, we cause that file to be listed on the screen without disturbing what is
in memory. The listing may be paused, as most SYSRES functions can be, by
pressing the space bar. Placing a * in front of this command or any other that
lists things will direct the output to the printer. The listing of these disk
files or those listed from memory using *LIST may be formatted so that only one
command will appear on a line and nested loops will be indented. A nice touch

The PAPER 48 Aug/Sept 1982

even i-f it isn't used all the time. These command save a lot o-f time and prevent
many mistakes in the handling o-f disk -files.

SYSRES has an APPEND command and a true MERGE. Append adds one program to the
end o-f another and is considerably -faster than merge which interleaves line
numbers. The AUTO command not only -feeds line numbers but will also give up to
127 characters o-f text. I have used this in the generation o-f DATA lines and in
“capturing" a picture drawn on the screen. DELETE -functions in a similar manner
as it always has by deleting a range o-f lines. MON provides a quick way to call
the TIM monitor. Typing OLD a-fter accidentally NEW i n g a program will recover it
even i-f you have also entered a variable name be-fore. WHY or WHY? provides help
when a mistake is encountered and does a good job o-f pointing out errors. TRACE
displays the line being executed or the values o-f variables or both. These are
displayed in windows in the upper part o-f the screen. TRACE can be delayed until
a certain point in the program at which time a POKE will turn it on. I never use
this command so I have a hard time getting excited about it.

RENUMBER will renumber all or part o-f a program. It will also rearrange line
numbers so that the order o-f lines and routines can be switched around. This is
use-ful and cannot be done with any other aid I know o-f. DUMP lists the value o-f
all scalar variables to the screen or printer but will not dump arrays. Many
times I want to see the values in an array so this seems like a minor
inconvenience. However, SYSRES has the ability to de-fine any shifted key to*
perform a function. SYSRES comes with many default values for shifted keys
which can be turned on using the KEYS command. Default values and keys you
define may be turned on and off without destroying their values. I have defined
keys to dump various array and to advance my printer one line at a time. I do
not use this function in PCWER since it requires you to set up special REM
statements at the beginning of the program. These functions in SYSRES are very
handy and easy to use.

SYSRES supports the most extensive CHANGE and FIND commands I have ever seen.
The author boasts of over 700 different combinations for CHANGE and I believe
it! You can direct change and find to only work if a match is found at the end
or beginning of a line. You can look for EXACT variable matches so that changing
X to A does not effect XX. Pattern matching is available also. Finally, you can
change or find only in the command area, which eliminates finding the tokens for
some commands embedded in other words in the program. These functions are very
useful and extensive explanations are given in the manual.

SYSRES provides a PUT and GET command to save and load sequential files. You
can actually create files to be read by other programs such as assemblers. You
can also enter your most used KEY functions to be recalled later using EXEC.
EXEC calls a sequential file and then enters what it finds in the file as if the
information were being typed at the keyboard. One creative use is to DUMP
variable values to a disk file and then load them again using EXEC.

SYSRES is the most complete and comprehensive programmer's aid I have seen. 1
cannot say it is the best for you since the requirements of various programmers
will differ. SYSRES takes up 8K of memory no matter how you look at it. I feel
that you should have a 32K machine to use it or have the extra RAM starting at
$9000. This also means it would be hard if not impossible to burn it into a
chip. SYSRES requires a disk drive since it comes on disk and many of its
functions are oriented toward one. ROMs like POWER can be used without disk but
they too are oriented in function toward drives. ROMS, of course, take up none
of your programming space but they quickly crowd the available sockets. Some of
the many commands and options in SYSRES will not be used by many programmers at
all and take up space but that is the price to pay for such a complete package.

The bottom line is that those who have the need for a powerful programming
aid and the RAM and disk drive to support it should look at SYSRES. Quite
frankly, SYSRES is FUN to use and I feel I have just scratched the surface. Many
good programmers produce excellent software without any programming aid. How
much more could they produce with a package like SYSRES?

The PAPER 49 Aug/Sept 1982

M i l l i p e de
UJa.1 1 banoer

Type: Software by Ralph Bressler
Model PET: Any PET or VIC (different versions)
Source: On Line Software

PO Box 2044
Orcutt, CA 93455

Price: $15 each

It is now 1 A.M. and my arms and fingers are aching and about to fall off.
Still, I just had to write now and tell you about two of the worst game programs
I have seen for the PET. This company must have no ethics or scrupples
what-so-ever to distribute these programs at this price. All I can say is that
they must be trying to lure you in with the low price. Quite frankly these are
two of the most captivating, aggravating, challenging games I have seen on the
PET. They make me play until 1 drop! 1 see millipedes in my sleep until I have
to either take a pill or get up and play some more! I ignore work long overdue
and must limit myself to only one game until the work is done. Shame on you, On
Line!

Both programs are fast since they are a combination of BASIC and machine
language. Both come with three pages or so of documentation giving an overview
of the game, the controls and scoring and some handy strategy tips. Both also
include sound to reward and to warn the player. My favorite is Millipede which
is much like another arcade game of similar name. I have never played the arcade
version but I think this is a close copy. There are 52 separate levels but I'll
have to take the programmer's word since I have only scored 4089 and was
somewhere around level 6. The game is complete with an ever expanding millipede,
a bouncing spider, fleas leaving mushrooms in their wake and the deadly scorpion
spreading poison mushrooms. All I can say is that when I finally get the board
set up the way I want it along comes a spider to squash me or a scorpion to send
the millipede straight down on top of me. Instructions are given to immediately
set the game in high speed mode or level 27 and maybe someday I'll try that. For
now, the game is fast and the movement smooth. At first, I found the controls a
little ackward but I quickly became used to them. To move 2 and C used for left
and right, * for up, + for down and 2 to fire. They machine language movement
routtines are easy enough to modify so that other keys may be used.

Wallbanger might have a chance of me playing it if Millipede wasn't around.
In this game you control a ship which you can rotate with 2 and C, move backward
with *, forward with + and fire with 2. The screen is bounded by walls which
close in as you progress from level to level. To begin you must choose the
number of balls which will be in play. In the first mode these balls bounce
randomly leaving blocks where they hit the wall which you may shoot for points.
You must avoid the balls or else your ship explodes. Shooting the balls in this
first mode will make the remaining ones quite vengeful. When the balls reach top
speed the mode changes to one where both balls and blocks are fair game.
Finally, if you fail to destroy all the balls, they head for your ship in one
great kamikaze raid. Again, any contact ends the game. Should you survive, (I
did once!) the walls close in and you start all over again.

I sit here hoping that other people will buy these programs so they will know
how afflicted 1 am. I also hope people will buy them so that On Line can show a
profit and decide to make more. A company that starts this way has a good
future. I, for one, would buy their next two games sight unseen just based on
this effort! These opinions are reflected by several students in my school who
are dedicated arcade game players and find these games interesting and
chal1 eng i n g .

The PAPER 50 Aug/Sept 1982

Mu 1 t i p 1 ica-tion o-f Fr ac t i onŝ
Equat i on s-

Type: So-ftware by Ralph Bressler
Model PET: Any 40 column PET
Source: Microcomputer Workshop

10 Elizabeth Place
Armonk, NY

Price: $25 each

These programs represent just two o-f the many pieces o-f educational so-ftware
produced by an experienced math educator. Not only does Don Ross have math
experience but he also is quite experienced in the use o-f microcomputers in the
classroom. This means that Don acutallu uses his own programs and is constantly
revising them based on his own experiences or the -feedback -from others.

The -fraction program divides the screen into three sections. The problem
which is randomly generated is displayed in the top third and it never changes
so that the student can always see the original. The second section o-f the
screen is the work area where the -fractions will be changed according to the
operations the students apply. The bottom third is reserved -for soliciting
student input and the error message displays. Unlike some other programs which
simply ask -for the correct answer and then mark it right or wrong, Don's program
guides the student through the problem. The student may choose at any step to
either cancel or reduce the -fraction or multiply. I-f they choose to cancel or
reduce they must give the correct numbers to start with, how they will be
changed and the -final result. A-fter the problem is in simplest form, the student
can multiply. The error messages are concise and to the point. A-fter completing
a problem, the program reports the number o-f procedural and computational errors
and asks i-f the student would like to continue or stop.

When the student is asked -for input it is virtually impossible to drop out o-f
the program. However, the stop key is not disabled as I -feel it should be. A
student can choose to reduce or cancel -first but the program always asks -for
numbers to cancel. This is a minor wording error. I -feel that the numbers are a
little large to begin with and I see no indication o-f them getting any harder as
the program progresses. The errors made in cancelling are not recorded anywhere
as they might be. Also, I was able to make the same mistake over and over again
without the program giving up and showing the correct answer. When you decide
you've had enough the program simply ends with no -final report. A-fter all o-f
this you may think I don't like the program. This is not true. Most o-f my
objections are based on opinion and it is up to the individual to decide on the
presentation o-f the material. I do -feel disabling the stop key and showing the
correct procedure a-fter a certain number o-f incorrect responses would be a good
i dea.

Equations has much the same approach as the -fractions program but is more
complex. The student is presented with an equation o-f the -form AX + B = C and is
asked to solve -for X using the correct procedure. Again, the student is guided
through the process by being asked to choose -from a set o-f rules. At any stage
the student may add, subtract, multiply or divide on both sides o-f the equation
or they may choose to simpli-fy. The instructions give a sample problem and its
complete solution which is very help-ful. The error messages are clear and
instruct the student as to where they went wrong. The program nicely accounts
•for odd solutions such as subtracting -5 rather than adding 5.

I -feel that the program moves very slowly but I suspect this is because I
already know how to do these problems. For someone who is just learning, the
step by step method would be very e-f-fective. When answering questions the
program is almost impossible to drop out o-f but, again, the stop key is active.
The equations given start out pretty hard and don't seem to get easier i-f you

The PAPER 51 Aug/Sept 1982

make many errors. I continue to make precisely the same errors at some places
and the program never gave up and told me the correct answer. When the student
decides to stop, the program ends with no final report. As I said before, many
of my objections are personal opinions which some would agree with and others
would not.

I feel that these two programs have what I consider to be some minor flaws
but are well worth adding to your library and using with your students. In fact,
I hope Don continues this series with other types of problems. There are many
programs which play cute games to teach students or simply ask for an answer but
there are few which show the step by step problem solving method. Once students
know the method they will be able to apply it to many different problems.

P r o o n ■a.mm i n a the R ET/ C BM

Type: Reference by Jerry Key
Model: Every PET/CBM Model
Source: COMPUTE! Books

P.O. Box 5406
Greensboro, NC 27403

Price: $24.95

It's extremely difficult to say anything more about this book except GO GET
IT! This has to be THE one reference book that we have always dreamed about but
never expected to see. Raeto West has not only stripped the PET/CBM down to the
very last piece, he told us what was there.

In a nutshell, this book not only goes into a detailed description of all the
commands available in Basic, it also shows how to implement many that aren't but
we wish they were. For instance, he tells you how to implement such routines as
CRUNCH, DELETE, MERGE, PRINT USING and gives you seven<!> different sort
routines. Differences between ROMs are detailed including the FAT 40. There is
at least a complete page on every Basic command, a complete reference to ML
OPCODES, a detailed and explained memory map and much, much more.

The leaning of the book is toward machine language programming but there is
something here for everyone. Jim Strasma pointed out that it gets into machine
language half way down the first page. Still, there has never been so much about
the PET/CBM in one place!

I have been using the book daily, and I mean daily, for about three months
and it is beginning to show it. I have only found one verifiable error to this
time. That says a lot by itself. The mysteries of the keyboard lookup tables,
what they mean and where they are have been revealed. Both on the 40 and 80
column machines. My answer to Stan Spence in I/O came from here. There are
routines for a special LIST routine (note JS, it is in Basic with the ML in data
statements). There are routines for repeat keys, defining your own keys and
sections on sound and graphics.

When I first asked Jim Strasma his opinion of the book, he said 111 would
almost give u d my disk drive for it". What else could be said ? My only
complaint is the version from COMPUTE! is of a poor quality by comparison to the
version from England. The pages seem to have a yellow tint and it is about one
fourth thicker because of the type paper. The glaring blue cover doesn't do much
for me but who am I to say. This book is a must but I recommend the version from
England although there is no difference in content. You will have to check with
the below address for the price over there:

LEVEL LIMITED
P.O. Box 438

Hampstead, London
NW3 1BH

The PAPER 52 Aug/Sept 1982

HESCAT

Type: So-ftware by Ralph Bressler
Model PET: BASIC 2.0 or 4.0 w/ 16K, dual disk, printer optional
Source: Human Engineered So-ftware

3748 Inglewood Blvd. Room 11
Los Angeles, CA 90066

Price: $29.95

HESCAT is a collection o-f -five main BASIC programs each with its own
•function. Some programs have machine language subroutines to speed up certain
■functions. HESCAT allows you to keep a -file o-f all the programs on all your
disks. Once this -file is created you can search -for a program to find what disks
it may be on. You can also get information about all your disks or just certain
ones. HESCAT will catalog about 131 disks and 3300 to 6000 filenames on a 4040
disk drive. One the 8050 drive the numbers are 214 disks and 10,000 to 20,000
f i1enames.

When the program is running you are presented with a main menu and sub-menus
as you make various choices. Default responses are always present so that you
can always return safely to a menu. To add a disk to the catalog you choose the
CATALOG option and place your disk in drive 1. HESCAT will then ask for an
“external ID" for that disk. This may be the same as the ID actually on the disk
or it may be a different one. This prevents problems if backup disks have the
same ID. HESCAT then reads the information it needs from the disk such as
filenames, internal ID, number of files and free space. This summary information
is added to a file called HEADERS and another file with the same name as the
external ID is created. This last file contains all the detailed information
about the disk being cataloged. If an ID is reused the old files are scratched
and the new information replaces them. This whole process takes well under a
minute per disk. HESCAT also allows you to easily “uncatalog" a disk by just
giving i ts external ID.

After a cataloging session it is suggested that you choose the SORT NAMES
option. This reads all the information about newly cataloged disks, adds it to
the ALPHA NAMES file and sorts that file alphabetically by file name. This file
is used by the other options which provide information about the disks. This
program runs without intervention and automatically chooses the better of two
sort methods.

The PRINT option allows you to obtain hardcopy information in three ways.
First you choose whether you want information about all the disks, a range of
IDs or just one disk. One choice is to print file names in an alphabetical list.
You may also choose to print the disk directories which will give you summary
information about that disk and all the filenames. Choosing the HEADERS option
allows you to get just the summary information about all disks. This is useful
to locate nearly empty disks and to see what IDs have been used.

Another option is one called DISPLAY which allows you to easily browse
through any sequential data file. The program allows you to scroll through the
file using the "D" and “U“ keys for down and up or "F" and “L" to get to the
first or last record in memory. Files which are very long will automatically
load just enough to fit in memory and will load more as you move through them.
This program is meant to be used on the HESCAT files but could be used for many
other purposes.

The LOCATE option searches the ALPHA NAMES file to find a program or search
string you specify. This file can be searched on disk or can be loaded into
memory and then searched. It can search the 1200 to 1700 filenames which will
load into 32K in around two seconds! Even if ALPHA NAMES is very long you can
load segments into m e m o r y and search them one at a time. A “don't care"
character is provided to help in your search. When a match is found the filename

The PAPER 53 Aug/Sept 1982

will be displayed on the screen along with the type o-f -file and the external ID
o-f the di sk it is o n .

The package even allows you to add a user-def i ned option by adding code into
the HESCAT program or adding another program which will be called by HESCAT. I
wanted to be able to locate programs by type o-f -file and within a range o-f disk
IDs. I wrote the program and within a short time had it working properly with
the other HESCAT programs.

With a complex package like this one, it is easy to -forget how to use some o-f
the -features, particularly i-f they are not used o-ften. The proper procedure can
be looked up in the instructions but that requires searching -for- the manual. HES
has included a short HELP section in the main menu program to explain the vital
parts o-f all procedures. You just press H and then the number o-f the option you
want help with. You can even add a "HELP" section -for any option you design.

As usual the manual provided is very complete and help-ful. It is nice to see
a company set a high standard and then maintain it. The manual explains -fully
the operation o-f the programs and gives detailed in-formation on how to recover
■from errors with minimum loss o-f data. A short explanation is even given on how
to change the PRINT program to use different printers. The instructions also
give program lists, illustrate -file structure and show you how to modify the
programs. The variables and routines in each program are laid out and carefully
explained so that you can see exactly how the programs work.

If you want to quickly catalog your disks with a minimum amount of problems,
this package is one to look at. It is versatile but easy to use because of the
extensive instructions in the programs and the manual.

P r q u) r i ter" 851 OAP

Type: Hardware by Ralph Bressler
Model PET: any with BASIC 2.0 or 4.0
Source: Distributor: Leading Edge

225 Turnp ike S t .
Canton, MA 02021

Dealers: many local and mail order
Price: $795

I have had the Prowriter connected to my PET system with a CmC ADA 1600
interface for almost two months now. It is an excellent printer and a good value
particularly when you keep in mind that it is being heavily discounted and can
be obtained for under $600. It works well with the SuperScript word processor
which can send all the control codes needed to make the Prowriter perform
properly. I have succesfully used it with programs of my own design and with
commercial programs such as Flex File. A complete list of its features would
consume three pages but here are some points.

The printer has pica, elite, compressed and proportional type faces which can
be software selected. It can do true underlining, boldfacing, and expanded
printing. Of course, it is bidirectional and logic seeking which makes it quite
fast. The friction and tractor feeds work very well and the tractor is
bidirectional which allows reverse line feeds. Bit image graphics are also
included. DIP switch settings allow the choice of many different features such
as the selection of the characters needed for several different foreign
languages. A Greek character set contains many symbols needed for math and
science. Variable line spacing makes superscripts and subscripts possible.

Some people fee; that the print quality is not as good as the Epson but I see
little difference. It is true that the Epson is better supported and more widely
used right now but I feel the Prowriter is a good value and will present some
advantages and few ’imitations.

The PAPER 54 Aug/Sept i9 S2

"Probably the best-
documented programs I ’ve
seen lor PET/CBM."

Robert Baker
Microcomputing
September 1981

PETICBM &
VIC OWNERS
Utilities & Games

"The strongest points of this
system are its unsurpassed
documentation and its

*
 human engineering."

Ralph Bressler, The Paper
■ Nov/Dec. 1981

G A M E S FOR VIC
Skier Thrill to downhill skiing, using your joystick to hit
flags and avoid obstacles. Great graphics. 3 levels of dif
ficulty. $17.95
Maze of Mikor Adventure-like game with stunning
graphics challenges you to steal the Warlock’s gold as
you evade the demon. $17.95
Tank Wars Match your wits against the evasive enemy,
maneuver around obstacles and avoid mines. $17.95
Victrek Graphics and sound add to the excitement as
you scan galactic maps, maneuver through star bases,
and battle klingons. Enhanced version included for8K
VIC. $17.95
Pinball Score points with flippers through bumpers and
alleys. This game is the real thing. $15.95
Simon Four squares light and sound at random. Then
you imitate the sequence. It gets tougher as you get
better. $15.95
Fuel Pirates Protect your stock of atomic fuel from
raiding pirates using your particle cannon. $15.95
Lazer Blitz Terrific graphics as you destroy enemy air
craft from your flying saucer. $17.95
Pak Bomber is dropping bombs that you must catch.
Great challenge for eye-to-hand coordination. $15.95

NEW FOR 5K V IC 201
Tank Trap You’re challenged to protect your citizens.
4 exciting levels, each tougher than the one before.
$17.95. .
Concentration Test your recall skills, when you try to
remember what you saw beneath the block, and match
it. $15.95.
Dam Bomber You must break the dam while under
cannon fire. $15.95.
VIC FORTH Full FigFORTH implementation with
compiler, interpreter and complete editor. Runs on
standard VIC 20 with 5K. $59.95 on cartridge.
HESMON Machine language monitor. Contains 50%
more commands than Commodore's. $39.95 on
cartridge.
Turtle Graphics Based on LOGO. Perfect for learning
computer programming. Great for kids. Very versatile.
$39.95 on cartridge.
HES Writer Word processing. $39.95 on cartridge.

SPECIAL ANNOUNCEMENT
TO OUR CUSTOMERS AND

DEALERS
HES has relocated to the San Fran

cisco Bay Area and is now a division
of USI International. We now have
greater resources to provide you with
excellent software on cartridge,
cassette, or diskette in superior quali
ty packaging.

Watch for more exciting products
from HES.

UTILITIES FOR PET & VIC

6502 ASSEMBLER PACKAGE
HESBAL is a 1- or 2-pass Assembler using standard
MOS mnemonics and operand formats, has pseudo
opcodes and over 25 error messages. HESEDIT is a full
screen text editor for use with HESBAL or alone.
Assembler package runs on PET or VIC with 1 cassette
and minimum 8K, (specify PET or VIC). $23.95 on
cassette, $26.95 on diskette.
HESCOM transfers data and programs bidirectionally
between PETs, VICs, or a PET and VIC at 3 times the
speed of the disk. Set up VIC as a terminal to PET and
create games for 2 players. Or use VIC as a peripheral to
PET for hi-res graphics and sound. Only $49.95 on
cassette, $52.95 on diskette.
HESCOUNT monitors BASIC program’s execution and
accumulates data. Essential for debugging and op
timization. Discover how many times your program
looped, and when IF statements were true or false. Fast
execution. Runs on PET or VIC. On cassette $23.95. On
diskette $26.95.
HESCAT Complete hi-speed diskette cataloging system.
Five programs let you sort names, print reports 3 ways,
and locate file names in memory or on disk, and much
more. Works with any PET/CBM, 16K and dual drives.
$39.95.
HESLISTER takes complex BASIC programs and prints
(to screen or printer) in an easily understood manner.
Lets you analyze BASIC programs to alter or debug
code. Works on any PET/CBM and 1 disk drive. $23.95.
HESPLOT Very fast hi-res graphics subroutines for VIC.
Includes line drawing routines. With 8K VIC plot within
field of 176 x 160. On cassette $17.95
All products available at your dealer or directly from HES.
Add $2 postage. Calif, res. add 6% sales tax.
We accept VISA and MasterCard. Dealer inquiries invited.

PET, CBM , an d VIC are tradem arks o f Com m odore.

Human engineered Software
71 Pork Lane • Brisbane, CR 94005

(415) 468-4110

^ Send today for your FREE CATALOG
of VIC and PET/CBM Software

Name.
Street.

C ity .

State. -Zip-
Mail to Human Engineered Software
71 Park Lane • Brisbane, CA 94005

CBM/PET INTERFACES

RS-232 SERIAL PRINTER INTERFACE - addressable -
baud rates to 9600 - switch selectable upper lower,
lower upper case - works with WORDPRO. BASIC and
other software - includes case and power supply.

MODEL-ADA1450 149.00
CENTRONICS NEC PARALLEL INTERFACE - address
able - high speed - switch selectable upper lower,
lower upper case - works with WORDPRO, BASIC and
other software - has Centronics 36 pin ribbon connector
at end of cable.

MODEL-ADA1600 129.00
CENTRONICS 730 737 PARALLEL INTERFACE - as
above but with Centronics card edge connector at end
of cable.

MODEL-ADA730 129.00
COMMUNICATIONS INTERFACE WITH SERIAL AND
PARALLEL PORTS - addressable - software driven -
true ASCII conversion - selectable reversal of upper-
lower case - baud rates to 9600 - half or full duplex - X-
ON, X-OFF - selectable carriage return delay - 32 char
acter buffer - centronics compatible — much more.

MODEL - SADI 295.00
ANALOG TO DIGITAL CONVERTER - 16 channels - 0
to 5.12 volt input voltage range - resolution is 20 milli
volts per count - conversion time is less than 100 micro
seconds per channel.

MODEL - PETSET1 295.00
REMOTE CONTROLLER WITH CLOCK CALENDAR
- controls up to 256 devices using the BSR X10 remote
control receivers - 8 digital inputs, TTL levels or switch
closure — 8 digital outputs, TTL levels.

MODEL - PETSET2 295.00
All prices are in US dollars for 120VAC

Prices on 220 VAC slightly higher
Allow $5 00 shipping & handling, foreign orders

add 10% for AIR postage
Connecticut residents add 7' ?% sales tax

All prices and specifications subject to change without notice
Our 30 day money back trial period applies

MASTER CHARGE VISA accepted
MENTION THIS MAGAZINE WITH VOUR ORDER

AND DEDUCT 5% FROM TOTAL

IN CANADA order from: Batteries Included, Ltd . 71 McCaul
Street. F6 Toronto. Canada M5T2X1. (416)596-1405
IN THE USA order from your local dealer or direct: Connecticut
microcomputer. Inc.. 34 Del Mar Drive. Brookfield, CT 06804.
(203)775-4595
Dealer inquiries invited

Connecticut microcomputer, Inc.
34 Del Mar Drive, Brookfield, CT 06804
203 775-4595 TWX 710 456-0052

NEW PET/CBM SOFTWARE
Let Computer Mat turn your Pet into a

Home Arcade!

ASTEROIDZ — Its your ship vs. a swarm of killer gammaroidz.
You are on a collision course and must destroy them before they
blast you into the next galaxy. Four levels of play. Has hyperspace
keys that move you around. Arcade style entertainment at its finest.
Great graphics and sound.
Cass. 8K .. $9.95
MUNCHMAN — How many dots can you cover? It’s you against
the computer munchers ZIP and ZAP. Can you clear the maze first
or will they get you? Number keys move you up, down, right and
left. GREAT GRAPHICS AND SOUND.
Cass. 8K .. $9.95
TARGET COMMAND — Its you against a barrage of enemy
lazers that are aimed at your ammo dumps. Sight in on the targets
and score as many hits as you dare. As your skill increases so does
the the difficulty — (5 levels to select). This is an arcade-style game
with great graphics and sound effects. A must for your PET/CBM.
Cass. 8K .. $9.95

ALL OUR SOFTWARE RUNS IN 8K
OLD-NEW ROM - 40 CHR. SCREEN

WRITE FOR FREE CATALOG OF VIC/PET SOFTWARE
PLEASE ADD $1.00 PER ORDER FOR SHIPPING

COMPUTER MAT • BOX 1664M • LAKE HAVASU CITY, AZ. 86403

TNW'S PTERM and XPTERM software converts

Commodore's PET/CBM computers to full ASCII

terminals to access such remote systems as The

Source, Telenet, Bulletin Boards, others. PTERM

provides a flexible basic term inal capability;

XPTERM adds disk file transfer capabilities. Ver

sions available for T N W ’S auto-answer/auto-dial

103 Modem, CBM-8010 coupler, and modems at

tached by T N W ’S serial interfaces. Also: PTW X
converts your

PET/CBM

into a T W X

SOF1
SOFTv
SOFTWa
SOFT SOFTWARE

terminal.

From

$19-99. De

tails from

George

Masters:

FROM

Dept. P, 3444 Hancock St., San Diego, CA 92110

(714) 296-2115 • TW X 910-335-1194

VISAlM asterCard • Dealer Inquiries Welcome.

for fast development of fast, tight programs...

step beyond FORTH, to

RPL
High speed, low memory requirements,

and user-friendly development tools

are no longer mutually exclusive.

Reverse Polish Language, a FORTH

like language now available for the

PET and CBM computers, is faster

than FORTH, easier to debug than

BASIC, and more space-efficient than

any other language known, including

assembly language. Here’s what

Loren W righ t, M ICRO magazine’s
PET Vet, says about it:

“RPL is generally faster
and m ore conservative of

m em ory than FO RT H . . .
RPL w ill serve well the
need for a language tha t
is faster than B A S IC yet
easier to program than
assem bly language. The
package is well-thought-
ou t and w e ll-docum ented .”

RPL uses the ordinary Commodore

BASIC screen editor for program entry

and editing. And the full power of

BASIC, in both immediate and pro

gram modes, remains available to the

user throughout a development

session. The RPL Compiler and Sym

bolic Debugger reside in the top 8K

of memory, ready to be invoked at

any time, directly from BASIC, via

the commands “compile” and "debug”.

RPL source code is saved to disk or

cassette just like BASIC source, and

is compiled memory-to-memory for

quick compilation turnaround and

instant source accessibility. RPL sup

ports separate compilation of program

modules through the use of the com

piler’s “global symbol” features,

which also permit the development

of true “subroutine libraries”.

The language itself is concise and

straightforward, making it much easier

to learn and master than most other

computer languages. A total of only

47 special keywords and symbols

provide the following capabilities:

• Nestable, multi-line IF . . . THEN . ..

ELSE constructs.

• Nestable FOR . . . NEXT loops.

• Named subroutines and functions

of arbitrary length.

• Compile-time constants and code

ORGability.

• Full 16-bit integer arithmetic and

logical manipulations.

• Built-in character-string handling.

• S tack-m anagem ent directives

including n-index, n-rotate.

• GET, INPUT, and PRINT operators

• Forward and backward symbolic

references, including G O T O .

• Easy access to machine language.

• Predefined arrays with numeric

and/or string contents.

• Local and global symbols.

. . . and much more. The 60-page RPL

manual is clear and well-organized,

making the language easy to learn and

easy to use: Loren W right says

that “the docum entation is about
the best I have ever seen.”

The Samurai RPL Symbolic Debugger

is a screen-oriented, object-level

debug facility using a soft-key-driven

command syntax for ultra-ease of use.

Features included are:

• Full visibility into both stacks at

all times.

• Single-stepping, with source-level

next-step display.

• Breakpointing in both auto-single

step and “go” modes.

• Address specification using ex

pressions with symbols.

• Stack-edit capability on both stacks.

• Debugger video usage is trans
parent to target program.

• Extra run time error-checking

during debugging only.

. . . and. of course, much more. Here's

what Robert Baker, author of the

PET-pourri column in Kilobaud Micro

computing, says about it:

“RPL offers an unbeatable
co m b in a tio n of speed,
memory space efficiency,
and ease of use. It is well-
d e s ig n e d , w e ll- im p le
m ented, and well-docu
mented, and it deserves
the serious consideration
of every PET/CBM pro
grammer.The Samurai RPL
Sym bo lic D ebugger, in
particular, must be seen to
be believed.”

The compiler includes a special

option making it very easy for

you to create “execute-only” object

modules from which all develop

ment-utility software and memory

allocations have been excluded. The

price you pay for the compiler also
includes an unlimited license to resell

the RPL “run-time library” (not the

compiler) in conjunction with “execute-

only” application object modules of

your own.

The Samurai RPL Compiler is now

available at the special introductory

price of $49.95, which includes the

manual in a nice 3-ring binder and

First Class postage within the con

tinental U.S. Media supplied is of top

quality, and is not copy-protected

(this permits you to make backups

for yourself without hassles). Com

piler and debugger together are

$80.91, com p le te . Manuals are

available separately at $10.00 and

$4.00, respectively, and will be credited

toward software purchase. Please

specify machine type, memory size,

RO M version, and media type

(cassette, 4040, or 8050 diskette)

when ordering.

Order anytime, day or night,
7 days a week
Outside Florida:

800- 327-8965
(ask fo r ext. 2)

W ith in F lorida : 305-782-9985

VISA an d Master Charge accep ted
All o r d e r s s h ip p e d w i th in 2 d a y s o f rece ip t

(For te ch n ica l inqu ir ies , p lease ph one
305-782-9985)

For more in formation, o r to order by
check or money order, please write:

SAMURAI SOFTWARE
P. 0. Box 2902

PomDano Beach. FL 33062

MICRO SOFTWARE SYSTEMS
P.O. Box 1442, Woodbridge VA

h a rd w a re lo_s t m ss
SupeJiPE i .. 7 99 5 1676
CBM 8096 Upg.Jia.dLe. to 8032 500 k20
CBM 8032 Com.pu.te.Ji 7495 1256
PET k032 ComputeJi .,..................... 1295 1089
PE/ k016 ComputeJi 995 836
VOC-20 ComputeJi wtth. ModutatoJi 325 289
CBM 8050 Di.y\k D j i l v e 1795 1 k9 5
CBM kOkO D l*k D j i l v e 1295 1088
CBM 2031 D t*k D j i l v e 695 58k
C2N Ca^yiette D j i i v e 75 69
CBM k022 P j i l n t e j i 795 669
EPSON MX-80 P J i t n t e J i 649 499

QRAFTRAX 80 g.Jiaphlc.* ROMa . . . 95 75
EPSON MX—80 h // P J i L n t e J i 749 649
EPSON MX-100 P J i L n t e J i 995 799

OEEE 0nteJifLaae 59 51
OTOH STARWROTER P j i l n t e j i 2074 1695
Xy,':ZC Hy~Q 1000 P j i l a t e j i 2885 2k 9 9
NEC SPONWRO/ER 7730 P j i l n t e j i ___ 3195 2695

OEEE 0nteJi{Lac.e & C a b t e 749 125
TALLU 802k PJiLnteJi 1995 1689
DOQO-P LOT PLOTTER 7495 1295
DOQO-9 LOT 6-COLOR P LO T T E R 1995 1676
CBM 8010 MODEM 279 23k
DC HAyES SMART MODEM 299 259

SMARlMODEM + Me/ERM Aofitu>aJie 494 399
ESCON OEEE/S e t e c t J i t c Oh & Cabte 695 635
ESCON O EEE/Se le c .t Jilc 50/60/70 . . 595 499

SOFTWARE LOST PROCE MSS PROCE
TOT LE CASS DOSK CASS DOSK
~B î C C b oa.Jid (8032) 39. 9~5 k*.9~5 3l-?~6 37.7~6
Di-yik Ltbjia.jii.an 29.95 3k. 95 25. 16 29.36
WoJid Pjio 4 PLua k50. 00 378.00
W oJid Chec.k 195. 00 16k. 00
V tA t Cate. (CBM) 199. CO 168. 00

395. 00 332.00
h i t e C ab tnet 69.95 59.00
Cjieate-A-Ba^e 295. 00 2k8. 00
PNSAM SySTEM #8. 795. 00 668.00
yONSAM SySTEM #4. 695.00 58 k .00
goNSAM SySTEM # 1 . 395.00 332. 00
MAQOS BuAtneAA Phq. 2k95. 00 1995. 00
PASCAL (TC L) 295.00 2k8. 00
PASCAL (WO) 75. 00 63.00
fLutth OR IH+ 55. 00 46. 20
P Jiog.Jiam 1 o o lk t t 39. 95 35. 60
Command-0 79.95 67.20
M a tJ it x . S o J i t ROM 54. 95 49. 20
S p a a e m a k e J i 00 39. 95 35. 60

S8193

MON ORDER $25. /-REE CATALOG. ADD 5% S&H. VA ADD k%. VOSA/MC OK

Skyles Electric Works Presents

The VicTree"
. ..Leaves your new Vic (or CBM 64) with 35 additional commands.
.. .Branches out to most BASIC 4 .0 programs.
... Roots into most printers.
Neu, from Skyles: the VicTree, a coordinated hardware and software package that allows your Vic
to branch out in unbelievable d irections and makes it easier than ever to do BASIC program m ing,
debugging and to access your disk. And the new VicTree provides routines to interface the V ic to
the powerful ProNet local network. 8kb o f ROM — 4kb for the BASIC commands, 4kb for disk
commands and interfacing to ProNet — plus 4kb o f RAM for m iscellaneous storage. Perfect not
only for the new Vic but also for the Com m odore 64. Unbelievably sim ple to use and to install, the
VicTree gives you all the additional BASIC 4.0 commands to allow most BASIC 4.0 programs to
work on your new Vic or CBM 64.

Now only $89.95...or $99.95 com plete w ith Centronics standard prin ter cable. (Cable alone
$ 19.95.) Available now from your local dealer or order through your Visa or MasterCard to ll free:

(800) 227-9998 (California, Canada, Alaska, Hawaii: (415) 965-1735) or send check or
money order d irectly to:

Skyles Electric Works

23IE South Whisman Road
Mountain View, CA 94041
(415) 965-1735

SIGNALMAN MARK I DIRECT CONNECT
MODEM - $89.50

Standard 300-baud, full duplex,
answer/originate. Powered by
long lasting 9-volt battery (not
included). Cable and RS-232
connector included.

EPROMS - HIGH QUALITY, NOT JUNK

Use with PET, APPLE, ATARI, SYM, AIM, etc. 450 ns. $6.50
for 2716,512.50 for 2532. We sell EPROM programmers
for PET and ATARI

5% INCH SOFT
SECTORED DISKETTES

Highest quality. We use them on
our PETs, APPLEs, ATARIs, and other
computers. $22.50(10 or $44.50120

NEW! C. ITOH STARWRITER F 10
DAISY WHEEL PRINTER

Letter quality, flawless copy at 40 char/sec. Bidirectional
printing, 15-inch carriage, uses standard Diablo ribbons
and print wheels.

PARALLEL - $1495, RS 232 - $1680, TRACTORS - $210

More than just an Assembler/Editor!

It's a
Professionally
Designed
Software
Development
System

MAE
for
PET

APPLE
ATARI

$169.95

Blast off with the software used on the space
shuttle project!
• Designed to improve Programmer Productivity.

• Similar syntax and com m ands - No need to relearn peculiar

syntaxes and com m ands when you go from PET to APPLE

to ATARI.

• Coresident Assembler/Editor - No need to load the Editor then the

Assembler then the Editor, etc.

• A lso includes Ward Processor, Relocating Loader, and much

more.

• Options: EPR O M Programmer, unimplemented opcode circuitry

• ST ILL NOT CONVINCED: Send for free spec sheet!

ATARI AND PET
EPROM PROGRAMMER

Programs 2716 and 2532
EPROMs. Includes hardware
and software. PET = $75.00-

Com modore Computer owners:
Are you tired of long waits to load and save on
Cassette? Like to have a disk but cannot affort it.
Then try the next best thing to disk - announcing

^ ^ The Rom Rabbitw Jar
V> 'S '

“ Your Wish

Easy to

install R O M !

1. M uch faster cassette I oat
2. Auto-repeat o n all keys
3. M e m ory test
4. 12 com m ands
5. W orks \dth or vUthout

toolkit

ROM and Manual
*49.95

b M y Comm and”

Loads and saves
an 8K program in

about 3 0 seconds.

Try it - your Pet
normally takes
3 minutes!

Visa
and
M.C.

Specify 3 0 (2001 PET)
or 4 0 (4001 or 8032)

C. Itoh Prow riter Printer. Better than MX80. We use
constantly with our Apple and PET. Can be used on
IBM, Atari, TRS-80, etc. 120 cps, friction and tractor
feeds, hi resolution dot graphics, nice looking, high
quality construction. Parallel - $499.00, with IEEE
interface for commodore - $599.00, RS232 - $660.00

3239 Linda Dr.
W ijis ton-Sa lem , N.C. 27106
(919)924-2889 (919)748-8446
Send for free catalog!

PIE-C
PET/CBM * IEEE-488

TO PARALLEL PRINTERS
By LemData Products i

P.I.E.-C MEANS—Professional design, Indispensible features, Excellent quality and Cost effectiveness. You
can’t buy a better parallel interface for your PET/CBM.

Our P.I.E.-C will interface your PET/CBM through the IEEE-488 bus t o

the NEC Spinwriter, the C. Itoh Starwriter, printers by Centronics, Epson, Anadex, Escon Products, the
Paper Tigers by IDS, the MIPLOT by Watanabe, the DIP printers, the AJ-841, the OKIDATA printers, plus
ALL OTHER parallel ASCII printers.

Assembled with custom case, CBM-TO-ASC1I code converter and appropriate cable, the P.I.E.-C is only
129 .95 (+ $5 S&H). Md. Res. +5% tax. Specify printer and CBM models.

LemData Products, P.O. Box 1080, Columbia, Md. 21044 Phone (301) 730-3257
*PET/CBM are trademarks of Commodore Business Machines

iSrilrg
i ’nftuiarp

-------- Vi
WarrantsBUYERS! - 90 Da.y Load; 1 Year Bus

AUTHORS! - Send one-page abstracts
DEALERS! - Send for terms. Demo Disk $30
SOFTWARE HOUSES! - Be a Co-op part of us!

PUBLISHER OF APF'L I CAT IONAL SOFTWARE

- Since 1979 -
PROGRAMS FOR COMMODORE PET/CBM

COOlP Business Researcher/$50/16k/simpIx decision too 1/a Igb.rgrd

RNAV3 Navigator Series (VOR/DME & VOR-VOR trip planning),*
C002P Paci f ic/*25/8k/6 s ta tes
C003P West*-rn/*30/16K/ll states
C004P Northeast/$30/16k/17 states

Bowling Secretarial System - Rvwd KIL0BAUD(6/82-Baker);
D010P LeagueEowl-24/*145/32k/2040-4040
DOIOC LeasueBowl-24/$160/32k/8050
C O U P Archi veBow I /$40/32k
C012P TournamentBouil /$40/16k

Data Management Series (In-Memory File Handling); Per File
C101P Deluxe Addresser/*40/16k/l 8, 2-up labels/4 line 215(32k)
C102P Home Address Book/*25/8k/use cass only/NO label 312(3210
C103P Home Inventory/$20/8k/use cass only 374(32k)
C104P Price Shopper/$20/8k/use cass only 375(32k)

Kitchen Software (Data Stmts); Rvwd MIDNITE#5/PERS.COMP.(Nov81)
C105P Grocery Mart/*15/8k and COMP.MERCHANDISING(May82)
C106P Dinner's 0n!/*15/8k

Educational Fun & Games /8k each/use cass only;

Deductive Detective Series/$15ea/E1em/JHS/Rvwd MIDNITE#4
C201P Mansion! C2<)2P Museum! C203P Pentagon!

Deductive Explorer Series/$l5ea/E 1 ern/JHS
C204P High Seas C205P Fur Trapper

Test/Eiri 1 1 /Answer Sampl er/$15/Hish School
C301P Ed. Pack (Quad. Equ./Vo) L i m e s 8, Areas/Gas Law E«?u.)

PROGRAMS FOR COMMODORE VIC-20

C103V Home I nven t o r y / .1.2 K / $20
C105V Grocery M«rt/5k/*15
Cl06V Dinner's On!/5k/*12.95
C2x0V B iackjx c k Tutor/8K /$15

& MORE ARE COMING!!

TO ORDER; Send Check(US Funds)#
add tax if Calif.# $.75/cass
for shipping. Give address#
program tit)e(s) & code(s).

We can ship COD(U.S.)# $3.50
Admin Fee PLUS reg COD fees.

BRILEY SOFTWARE Box 2913 Livermore#CA 94550-0291 415/455-9139

V IC 20 /PET /C BM O W N ER S

W ALLBANGER - Bast your way through the
dodge'm, blast'm, and attack modes. If you
destroy the bouncing balls before they destroy you,
the walls close in for the next round. Wallbanger is
written in machine language, has great sound, and
encourages complex strategies.
C A SS/5 K /V IC 20 /C B M 8032 _ _
CA S8 /8K /40 COL SC PEEN /O LD -N EW R O M S/FAT FORTY . . . 9) l O . U U

(CALIF. RES. ADO 6 % SALES TAX)

MILLIPEDE - Exterminate the oncoming millipedes
and fleas as they descend through the mushroom
patch. Bast giant bouncing spiders before they
pounce on you. Shoot a millipede in the body and
suddenly two millipedes descend toward your ship.
Millipede is written in machine language, has
excellent graphics, and great sound.
C A SS/5 K /V IC 20 /C B M 8032 0 4 1 E f> f»
C A SS /8 K /4 0 COL SCREEN /O LD -N EW RO M S/FAT FORTY . . . 9 | 3 > U U

[CALIF. RES. A D D 6 % SA LES TAX)
W rite for FREE game details:

ON LIIME SOFTWARE
P.O.BOX B044

ORCUTT, CA S345S

W A RN IN G ! These games cause high panic levels!

V IC 20 /PET /CBM O W N ER S

X
PET/CBM

2000/3000/4000 Series
not using a CRT, or display controller chip

$ 275.00*

Select either
SO x 25 or 40 x S5

On The
Built-in
Display

F r o m the keyboard or program
Displays the full, original character set

Available from your local dealer or:
EXECOM CORP.

1901 Polaris Ave.
Racine, Wl 53*404
Ph. 414-632-1004

★ Plus installation charge of $75.00

Available only for Basic 3.0 S. Basic 4.0

PETS CBM™a

trademark of Commodore Business Machines

E x c itin g , new games In te ra c tiv e language. V I C
* Easy to lea rn w ith 60+ powerful commands
* Oouble density graphics, la rg e rurt>er d isp lay
* LOADIng and SAVEing o f VIGIL programs to cassette o r d is k e tte
* Nine complete programs Included - Breakout, SpaceWar, A n t lA ir c ra f t ,

SpaceBattle, C oncentration, Maze, Kaleidoscope 4 F o rtu n e T e lle r.
* Comprehensive 50+ page manual
* For OLO, MEW or 4.0 ROMS w ith 8K o f memory U.S. I CANAOA FOREIGN

VIGIL fo r PET/CBM on cassette o r d is k e tte w/9 programs...................$35................. $40
VIGIL fo r VIC on cassette (requ ires 3K memory expander).................$35................. $40
VIGIL User's Manjal (re fundable w ith software o rd e r).......................$10................. $12
VIGIL In te rp re te r L is t in g (6502 Assembler Language)......................... $25................. $30

PET

PET • APPLE II USERS T l N Y P A S C A L
i t lv e to BASIC fo r PET o r AP
, m od ifies and maintains source language.

* COMPILER - converts your source to an executable P-code form at.
* INTERPRETtR - executes compiled P-code. Features b u i l t - in TRACE.
* CASE-OF,WHILE-00,IP-THEN-ELSE.REPEAT-UNTIl,FOR-TO/DOWNTO,PROC,FUNC
* Graphics version has more: GRAPHICS,PLOT,POINT.TEXT.INKEY.ABS.SQR.

APPLE I I has lo res S hires-COLOR, HGIiAPHlCS.HCOLOR.HPLOT.POL and TONE
U.S. I CANAOA FOREIGN

TINY Pascal PLUS* GRAPHICS PET 32K NEW/4.0 ROMS d is k e tte $50................ $60
TINY Pascal PLUS* GRAPHICS PET 32K NEW/4.0 ROMS ca sse tte $55................ $65
TINY Pascal PLUS* GRAPHICS APPLE I I 48K and DOS 3 .2 /3 .3 $50................ $60
TINY Pascal NON-GRAPHICS PET 16K/32K NEW/4.0 ROMS d is k e tte $35................ $45
TINY Pascal NON-GRAPHICS PET 16K/32K NEW/4.0 ROMS ca sse tte$40................ $50 f ”
TINY Pascal NON-GRAPHICS APPLE I I 32K/48K and OOS 3 .2 /3 .3 $35................ $45 / f
TINY Pascal U ser's Marual (re fundable w ith software o rd e r)........... $10................ $12 / r
TINY Pascal 6502 In te rp re te r L is t1 ng-GRAPHICS ve rs io n $25................ $30 / I
TINY Pascal 6502 In te rp re te r L is t i no-NON-GRAPHICS ve rs io n$15................ $20j[V

T i n y b a s i c c o m p i l e r - p e t [& =
A true com piler th a t turns your BASIC program in to fa s t machine code

* Subset o f PET BASIC compiles to 6502 machine code. ________
* Has f u l l f lo a t in g p o in t c a p a b ilit ie s and functions.
* Compiler l is t in g optiona l w ith 16K vers ion (inc luded).
* Can load compiled machine code anywhere In memory. '-----

U.S. A CANADA FOREIGN
TINY Basic Compi1er-OLD/NEW/4.0 ROMS m in. 8 K -ca se tte /d 1 ske tte ...$ 2 5$30
TINY Basic U ser's Maiual (re fundable w ith software o rd e r)$10................. $12

PET MACHINE LA N G U A G E GUIDE

I
Now 1n i t s n in th p r in t in g . Learn the hidden ta le n ts o f your OLD, NEW o r 4 .0 ROM
PET/CBM w ith the easy to fo llo w manual. D e ta ils 30 o f the PET's b u i l t - in -- ——^
ro u tin e s . U.S. S CANAOA FO REIGN^P*^
PET MACHINE LANGUAGE GUIOE fo r OLD, NEW or 4.0 ROMS...........................$9................. $11 —

m m
ABACUS SOFTWARE
P. 0. Box 7211
Grand Rapids. Michigan 49510

B I G / B 4 1 - 5 5 1 0 VISA'

Prices Inc lude posi
Orders *u s t be prepaid
check, money o rder or ba r*-
card. Foreign orders may be
paid fo r v ia in te rn a tio n a l
money order or bartcard:
(Acces*,Eurocard,Barclaycard)

THE ULTIMATE RESIDENT PROGRAM MANIPULATION SYSTEM FOR PET^/CBM™ MICROCOMPUTERS

C O M P A R E S P E C IF IC A T IO N S !

SO COMPLETE,
EVEN THE BEST OF
THE COMPETITION

DOESN'T COMPARE!

E X T E N D E D D O S S U P P O R T

® (type "N " keyboard)
► (type "B " keyboard)

(original keyboard)

These commands may be used
interchangably, to perform
the following dos support

Automatic printer output? yes no
Comnnand Function Selectable ASCII conversion? yes no

ft? Display disk status / send command List programs without loading them? yes no
@N Form at (header) a new diskette Formatted program listings? yes no
@1
<®V

Force in itialize diskette
Validate diskette (collect) Dump SEQuential/RELative files? yes no
Duplicate diskette Edit data files? yes no

i® R
Copy or concatenate disk file (s)*
Rename file True program merge? yes no

<®S Scratch file(s)* Auto number with A U T O TEXT? yes no
<»$
<®U:

L ist d irectory*
Reset disk drive

Load machine language programs? yes no
(®L List disk file or BASIC program* Auto-execute machine language programs? yes no

* Added'enhanced disk command. Directory (menu) file commands? yes no

E X T E N D E D E D I T O R

/ Quick load from disk
t Quick load from disk w ith auto run
APPEND Append from disk to end o f current program
AUTO Auto line number (allows header)
BLOAD Load machine language (binary) file
BRUN Load and execute machine language program
CHANGE Change pattern to another pattern
CLOSE Close one or all files
CMD Set output to file (does not send "R E A D Y .")
DELETE Delete a range o f lines from program
DUMP Dump all scalar variables to screen or file
EXEC Execute a file as keyboard commands
FIND Find occurances o f a pattern
oET Read a sequential file into editor
KEY Define a key as a special function
KEYS Turn key functions on
K ILL Disable SYSRES”
K IL L * Disable SYSRES’" and unreserve m emory
LIST Improved BASIC LIST command
LOAD Defaults to disk drive
MERGE Merge from disk into current program
MON Break to current machine language monitor
OLD Restore program a fte r "NEW "
PUT Send program to disk as text file
RENUMBER Renumber all or part o f program
RUN Run current program, ignores screen garbage
SAVE Defaults to disk drive, allows replace
SETD Set disk device § , allows m ultiple drives
SETP Set printer channel, form at mode, paging
TRACE Select 1 o f 3 trace/step modes and speed
VE R IFY Compare current program against disk/tape
WHY Print position o f last error
WHY? List line o f break or error
* Send output to printer
If Display current version o f SYSRES'"

S Y S R E S " PO W ER"

Number of ADDED commands 33 13
Number of IMPROVED BASIC commands 7 none
Number of DOS SUPPORT commands 11 none
Approximate added syntax options 1200 60
Instruction manual length 86 pages 75 pages
Instruction manual style structured conversatic
Re-loactable? yes no
Use on more than one (any) PET/CBM" yes no
Upgradable yes no

C O M P A R E F E A T U R E S ! S Y S R E S ” P O W E R ”

C O M P A R E "E Q U IV A L E N T " F U N C T IO N S!

Function: Change occurances of one pattern to another.

Feature S Y S R E S ” PO W ER"

Command word CHANGE @
'Wild cards' in search string? yes yes
'Wild cards' in replace string? yes no
Selectable range? yes yes
Match in entire text? yes yes
Match in commands only? yes no
Match exact variable names? yes no

Function: Define special one-key functions.

Feature S Y S R E S " POW ER

Command word KEY REM"
Requires BASIC program changes? no yes
Destroys variables? no yes
Re-define any key? yes no
Maximum string length 255 73
Quotes and carriage-return allowed yes no
Re-define any token key? yes no
Retain user keys from program to program? yes no

JUST A FEW OF THE FE A TU R E S OF
SYSRES"

* Fast up/down scrolling which works!
► Advanced repea t-key routine!
► Re-define any or all keys as any keyword

(fu ll or short fo rm) or as any string up to 255
charactors long!

* A u to line num bering which can feed a string
o f up to 127 charactors as w ell!

* Extended DOS support (requires DOS 2A or
greater)!

* Never enter another file nam e! A ll f ile
commands work from the d irec to ry !

* Supports m ultip le disk drives!
* L is t BASIC programs, sequential and

re la tive files w ith ou t loading them in to
m em ory!

►TR U E PROG RAM MERGE (overlay).
Supports subroutine libraries!

* Load and run machine language programs
w ith param eter passing!

* Supports m ultip le printers!
* A u tom atic p rin te r output w ith paging plus

fo rm a tte d listings w ith fu ll ASCII code
conversion including cursor contro l and
special charactors fo r non-CBM "1 printers!

* Ed it te x t file s and assembler source code
w ith ou t leaving BASIC!

* Renumber p a rt o f a program or even
change the order o f lines!

* Over 700 F IN D /C H A N G E commands
including variab le names (nA $ " w ill not
m atch "B A S ”), pa tte rn m atch ing w ith
"w ild -ca rd s ", and even com mands to
remove spaces and REM's!

* Three TR A C E modes including trace
variables!

* Does not a ffe c t BASIC program operation!
* One A U T O -B O O T D ISK ETTE works for

A L L PET1" or CBM™ com puters (BASIC 2.0
or greater w ith a t least 16k o f RAM.).
SYSRES™ requires NO ROM SPACE or
extra boards, so you can take it w ith you if
you w a n t to use another com puter. I t may
be pu t above the screen i f you have RAM
there. I t boots au tom atica lly w ithout
disturbing any program in RAM!

" If, for any reason, you are not satisfied
w ith the SYSRES’" system, you may return
i t along w ith any back-up disks (w ith in 30
days) fo r a fu ll refund. Your disks w ill be
erased and returned to you.

* D iskette and Extensive Manual - only $95
(Please specify disk drive model when
ordering.)

C A LL US FOR THE NAME OF YOUR
NEAREST D E A LE R

We are pleased to announce the aquisition of the author, Don Lekei, and the rights to SY SR E S1". Don is now hard at work
producing versions of our S T O C K F IL E ” series of integrated IN V E N T O R Y C O N T R O L , P O IN T OF SA LE, O R D E R

CANADA
Tel: (604) 984-0477
#6,144 West 15th St.
North Vancouver, B.C.
Canada V7M1R5

EN T R Y , and B IL L OF M A T E R IA L S packages for
the PET/CBM1" computers. The best inventory control
system for the APPLE] [” will soon be available for the
CBM"1. See your local dealer for details!

S Y S R E S " is a trademark of Solidus International Corp.
(POWER” is a trademark of Professional Software Inc.)

UNITED STATES
Tel: (206) 734-3744
#204,4202 Guide Meridian
Bellingham, WA
U.S.A. 98226

SOLIDUS INTERNATIONAL CORPORATION

ISLAND SOFTWARE
Announces

PROGRAMS FOR THE GIFTED AND TALENTED

THE M INDSTRETCHER S E R IE S -------A unique set of microcomputer programs specifically designed
for gifted and talented students in grades 3 through 9.

PROGRAMS WILL OPERATE ON ANY 8K PET

TAPE
MS 1. Jigsaw — Four programs, with a total of 16 picture puzzles to assemble, ranging from a view of

New York City to Whistler’s Mother ...$20.00

MS 2. Traffic Jam / Chain Reaction — Two programs. Both of these provide exercise in strategy, as
you try to force your opponent into a vulnerable situation .. $20.00

MS 3. Rubik / Candles — Two programs. Both of these increase in difficulty to challenge the student
as he develops his problem-solving skills ... $20.00

MS 4. Black / Kayles------ Two programs. Deceivingly simple rules, but the strategy in these two
contests makes use of advanced mathematical theo ry .. $20.00

MS 5. Jinx / Welter - - - Two programs. Two unique diversions to develop deductive reasoning and
insight into the structure of mathematical abstractions... $20.00

Every program is packaged with a teacher’s guide sheet which describes the history of that
MINDSTRETCHER and many specific teaching suggestions based upon actual classroom use.

Please send your order with a check or purchase order to:

ISLA N D SO FTW ARE
Box 300

Lake Grove, N.Y. 11755

